Stem Cell Reviews and Reports

, Volume 11, Issue 2, pp 298–308 | Cite as

Molecular Physiognomies and Applications of Adipose-Derived Stem Cells

  • F. Uzbas
  • I. D. May
  • A. M. Parisi
  • S. K. Thompson
  • A. Kaya
  • A. D. Perkins
  • E. Memili
Article

Abstract

Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine.

Keywords

Mesenchymal stem cells Embryonic stem cells DNA methylation Chromatin remodeling microRNAs Pluripotency Multipotency Differentiation Regenerative medicine 

Notes

Acknowledgments

FU was supported by the funding program of Research Grants for Doctoral Candidates and Young Academics and Scientists from the German Academic Exchange Service (DAAD). IDM was funded by the Undergraduate Research and Mentoring grant from the National Science Foundation and through summer research grant from the Office of Graduate Studies at Mississippi State University. ADP was supported by the National Science Foundation under award EPS 0903787. SKT was funded by the Undergraduate Research and Mentoring (URM) grant and Research Experiences for Undergraduates (REU) grant DBI-1004842 from the National Science Foundation. AMP was supported by a Research Experiences for Undergraduates (REU) grant DBI-1004842 by the National Science Foundation. Partial funding was provided by Mississippi Agricultural and Forestry Experiment Station.

Conflict of Interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMedGoogle Scholar
  2. 2.
    da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.CrossRefPubMedGoogle Scholar
  3. 3.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefPubMedGoogle Scholar
  4. 4.
    Mizuno, H. (2009). Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. Journal of Nippon Medical School Nippon Ika Daigaku Zasshi, 76(2), 56–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Fraser, J. K., Schreiber, R., Strem, B., et al. (2006). Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S33–S37.CrossRefPubMedGoogle Scholar
  6. 6.
    Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: ısolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.CrossRefPubMedGoogle Scholar
  7. 7.
    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260.CrossRefPubMedGoogle Scholar
  8. 8.
    Gir, P., Oni, G., Brown, S. A., Mojallal, A., & Rohrich, R. J. (2012). Human adipose stem cells: current clinical applications. Plastic and Reconstructive Surgery, 129(6), 1277–1290.CrossRefPubMedGoogle Scholar
  9. 9.
    Gimble, J. M., Grayson, W., Guilak, F., Lopez, M. J., & Vunjak-Novakovic, G. (2011). Adipose tissue as a stem cell source for musculoskeletal regeneration. Frontiers in Bioscience (Scholar Edition), 3, 69–81.CrossRefGoogle Scholar
  10. 10.
    Monaco, E., Bionaz, M., Sobreira de Lima, A., Hurley, W. L., Loor, J. J., & Wheeler, M. B. (2010). Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells. Stem Cell Research & Therapy, 1(1), 7.CrossRefGoogle Scholar
  11. 11.
    Sági, B., Maraghechi, P., Urbán, V. S., et al. (2012). Positional identity of murine mesenchymal stem cells resident in different organs is determined in the postsegmentation mesoderm. Stem Cells and Development, 21(5), 814–828.CrossRefPubMedGoogle Scholar
  12. 12.
    Sugii, S., Kida, Y., Kawamura, T., et al. (2010). Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3558–3563.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.CrossRefPubMedGoogle Scholar
  14. 14.
    Bourin, P., Bunnell, B. A., Casteilla, L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy, 15(6), 641–648.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Gronthos, S., & Zannettino, A. C. W. (2011). Methods for the purification and characterization of human adipose-derived stem cells. Methods in Molecular Biology (Clifton, N.J.), 702, 109–120.CrossRefGoogle Scholar
  16. 16.
    Lin, G., Garcia, M., Ning, H., et al. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Baglioni, S., Francalanci, M., Squecco, R., et al. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23(10), 3494–3505.CrossRefGoogle Scholar
  18. 18.
    Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., & Ramesh, T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell and Tissue Research, 347(2), 419–427.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin, C.-S., Xin, Z.-C., Dai, J., & Lue, T. F. (2013). Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histology and Histopathology, 28(9), 1109–1116.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Sousa, B. R., Parreira, R. C., Fonseca, E. A., et al. (2014). Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 85(1), 43–77.CrossRefGoogle Scholar
  21. 21.
    González-Cruz, R. D., Fonseca, V. C., & Darling, E. M. (2012). Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109(24), E1523–E1529.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Izadpanah, R., Kaushal, D., Kriedt, C., et al. (2008). Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Research, 68(11), 4229–4238.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Berdasco, M., Melguizo, C., Prados, J., et al. (2012). DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. The American Journal of Pathology, 181(6), 2079–2093.CrossRefPubMedGoogle Scholar
  24. 24.
    Sørensen, A. L., Timoskainen, S., West, F. D., et al. (2010). Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells and Development, 19(8), 1257–1266.CrossRefPubMedGoogle Scholar
  25. 25.
    Boulland, J.-L., Mastrangelopoulou, M., Boquest, A. C., et al. (2013). Epigenetic regulation of nestin expression during neurogenic differentiation of adipose tissue stem cells. Stem Cells and Development, 22(7), 1042–1052.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuijk, E. W., de Sousa, C., Lopes, S. M., Geijsen, N., Macklon, N., & Roelen, B. A. J. (2011). The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 17(2), 254–271.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Hackett, J. A., Zylicz, J. J., & Surani, M. A. (2012). Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics: TIG, 28(4), 164–174.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang, R., Shao, J., & Xiang, L. (2011). GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. The Journal of Biological Chemistry, 286(47), 41083–41094.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Samavarchi-Tehrani, P., Golipour, A., David, L., et al. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1), 64–77.CrossRefPubMedGoogle Scholar
  30. 30.
    Seeliger, C., Culmes, M., Schyschka, L., et al. (2013). Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification. Cell Transplantation, 22(1), 119–131.CrossRefPubMedGoogle Scholar
  31. 31.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–560.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Fisher, C. L., & Fisher, A. G. (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Current Opinion in Genetics & Development, 21(2), 140–146.CrossRefGoogle Scholar
  33. 33.
    Ernst, J., Kheradpour, P., Mikkelsen, T. S., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345), 43–49.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Li, M., Liu, G.-H., & Izpisua Belmonte, J. C. (2012). Navigating the epigenetic landscape of pluripotent stem cells. Nature Reviews Molecular Cell Biology, 13(8), 524–535.CrossRefPubMedGoogle Scholar
  35. 35.
    Lund, E., Oldenburg, A. R., Delbarre, E., et al. (2013). Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Research, 23(10), 1580–1589.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hu, X., Fu, Y., Zhang, X., et al. (2014). Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells. Development, Growth & Differentiation, 56(3), 206–213.CrossRefGoogle Scholar
  37. 37.
    Noer, A., Lindeman, L. C., & Collas, P. (2009). Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells and Development, 18(5), 725–736.CrossRefPubMedGoogle Scholar
  38. 38.
    Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504–507.CrossRefPubMedGoogle Scholar
  39. 39.
    Li, M. A., & He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 34(8), 670–680.CrossRefGoogle Scholar
  40. 40.
    Ragni, E., Montemurro, T., Montelatici, E., et al. (2013). Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Experimental Cell Research, 319(10), 1562–1574.CrossRefPubMedGoogle Scholar
  41. 41.
    Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.CrossRefPubMedGoogle Scholar
  42. 42.
    Adegani, F. J., Langroudi, L., Arefian, E., Shafiee, A., Dinarvand, P., & Soleimani, M. (2013). A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Molecular Biology Reports, 40(5), 3693–3703.CrossRefPubMedGoogle Scholar
  43. 43.
    Xu, C.-X., Xu, M., Tan, L., et al. (2012). MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. The Journal of Biological Chemistry, 287(42), 34970–34978.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Jabbarzadeh, E., Starnes, T., Khan, Y. M., et al. (2008). Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11099–11104.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Nii, M., Lai, J. H., Keeney, M., et al. (2013). The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels. Acta Biomaterialia, 9(3), 5475–5483.CrossRefPubMedGoogle Scholar
  46. 46.
    Uysal, C. A., Tobita, M., Hyakusoku, H., & Mizuno, H. (2014). The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Advances in Wound Care, 3(6), 405–413.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering Part A, 14(6), 945–953.CrossRefPubMedGoogle Scholar
  48. 48.
    Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells (Dayton, Ohio), 30(5), 804–810.CrossRefGoogle Scholar
  49. 49.
    Chandler, E. M., Seo, B. R., Califano, J. P., et al. (2012). Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9786–9791.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Sun, N., Panetta, N. J., Gupta, D. M., et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15720–15725.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Galach, M., & Utikal, J. (2011). From skin to the treatment of diseases–the possibilities of iPS cell research in dermatology. Experimental Dermatology, 20(6), 523–528.CrossRefPubMedGoogle Scholar
  52. 52.
    Dudakovic, A., Camilleri, E., Riester, S. M., et al. (2014). High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. Journal of Cellular Biochemistry, 115(10), 1816–1828.CrossRefPubMedGoogle Scholar
  53. 53.
    Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. The Canadian Veterinary Journal. La Revue Vétérinaire Canadienne, 50(2), 155–165.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Fortier, L. A., & Travis, A. J. (2011). Stem cells in veterinary medicine. Stem Cell Research & Therapy, 2(1), 9.CrossRefGoogle Scholar
  55. 55.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.CrossRefPubMedGoogle Scholar
  56. 56.
    Rodriguez-Osorio, N., Urrego, R., Cibelli, J. B., Eilertsen, K., & Memili, E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78(9), 1869–1886.CrossRefPubMedGoogle Scholar
  57. 57.
    Kang, K.-S., & Trosko, J. E. (2011). Stem cells in toxicology: fundamental biology and practical considerations. Toxicological Sciences: An Official Journal of the Society of Toxicology, 120(Suppl 1), S269–S289.CrossRefGoogle Scholar
  58. 58.
    Bilousova, G., Jun, D. H., King, K. B., et al. (2011). Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells (Dayton, Ohio), 29(2), 206–216.CrossRefGoogle Scholar
  59. 59.
    Wang, B., Miyagoe-Suzuki, Y., Yada, E., et al. (2011). Reprogramming efficiency and quality of induced pluripotent stem Cells (iPSCs) Generated from muscle-derived fibroblasts of Mdx mice at different ages. PLoS Currents, 3, RRN1274.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Yan, X., Ehnert, S., Culmes, M., et al. (2014). 5-azacytidine ımproves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PloS One, 9(6), e90846.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Lindroos, B., Aho, K.-L., Kuokkanen, H., et al. (2010). Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Engineering Part A, 16(7), 2281–2294.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Uzbas
    • 1
  • I. D. May
    • 2
  • A. M. Parisi
    • 3
  • S. K. Thompson
    • 3
  • A. Kaya
    • 4
  • A. D. Perkins
    • 5
  • E. Memili
    • 3
  1. 1.Helmholtz Zentrum MünchenInstitute of Stem Cell ResearchNeuherbergGermany
  2. 2.Department of Animal and Dairy Sciences, and Department of Computer Science and EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.Department of Animal and Dairy SciencesMississippi State UniversityMississippi StateUSA
  4. 4.Alta Genetics Inc.WatertownUSA
  5. 5.Department of Computer Science and EngineeringMississippi State UniversityMississippi StateUSA

Personalised recommendations