Advertisement

Temporal Expression of Calcium Channel Subunits in Satellite Cells and Bone Marrow Mesenchymal Cells

Abstract

Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells. We examined whether the expression of calcium channel subunits in MSC is similar to that of skeletal muscle satellite cells and if their levels of expression are modified after treatment with bone morphogenetic protein-4 (BMP4). We found that during myogenic differentiation, MSC first express the α2δ1 subunit and the cardiac channel subunit Cav1.2. In contrast to the α2δ1 subunit levels, the Cav1.2 subunit decreases rapidly with time. The skeletal channel subunit Cav1.1 is detected at day 3 but its expression increases considerably, resembling more closely the expression of the subunits in satellite cells. Treatment of MSC with BMP4 caused a significant increase in expression of Cav1.2, a delay in expression of Cav1.1, and a reduction in the duration of calcium transients when extracellular calcium was removed. Calcium currents and transients followed a pattern related to the expression of the cardiac (Cav1.2) or skeletal (Cav1.1) α1subunits. These results indicate that differentiation of untreated MSC resembles differentiation of skeletal muscle and that BMP4 reduces skeletal muscle calcium channel expression and promotes the expression of cardiac calcium channels during myogenic differentiation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.

  2. 2.

    Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.

  3. 3.

    Otto, W.R., Sarraf, C.E. (2012). Culturing and differentiating human mesenchymal stem cells for biocompatible scaffolds in regenerative medicine. In: Human Cell Culture Protocols, Methods Mol Biol, vol. 806, chapter 27.

  4. 4.

    Grajales, L., Garcia, J., & Geenen, D. (2012). Distinct temporal patterns of myogenic lineage development exist in bone marrow-derived mesenchymal stem cells compared to skeletal muscle satellite cells and are enhanced after BMP4 treatment. Journal of Molecular and Cellular Cardiology, 53(3), 382–391.

  5. 5.

    Lin, Z., Witschas, K., Garcia, T., et al. (2008). A critical GxxxA motif in the γ6 calcium channel subunit mediates its inhibitory effect on Cav3.1 calcium current. Journal of Physiology, 586(22), 5349–5366.

  6. 6.

    García, K., Nabhani, T., & García, J. (2008). The calcium channel α2/δ1 subunit is involved in extracellular signaling. Journal of Physiology, 586(3), 727–738.

  7. 7.

    Tamayo, T., Grajales, L., & García, J. (2012). Commitment of satellite cells expressing the calcium channel α2δ1 subunit to the muscle lineage. J Signal Transduction. doi:10.1155/2012/460842.

  8. 8.

    Dulhunty, A. F. (2006). Excitation-contraction coupling from the 1950s into the new millennium. Clinical and Experimental Pharmacology and Physiology, 33(9), 763–772.

  9. 9.

    Boomsma, R. A., Swaminathan, P. D., & Geenen, D. L. (2007). Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. International Journal of Cardiology, 122(1), 17–28.

  10. 10.

    Grajales, L., Garcia, J., Banach, K., & Geenen, D. (2010). Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development. Journal of Molecular and Cellular Cardiology, 48(4), 735–745.

  11. 11.

    Kassem, M. (2004). Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning and Stem Cells, 6(4), 369–374.

  12. 12.

    Mazaheri, Z., Movahedin, M., Rahbarizadeh, F., & Amanpour, S. (2011). Different doses of bone morphogenetic protein 4 promote the expression of early germ cell-specific gene in bone marrow mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 47(8), 521–525.

  13. 13.

    Alden, K. J., & Garcia, J. (2001). Differential effect of gabapentin on neuronal and muscle calcium currents. Journal of Pharmacology and Experimental Therapeutics, 297(2), 727–735.

  14. 14.

    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T Method. Methods, 25, 402–408.

  15. 15.

    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.

  16. 16.

    Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7) RESEARCH0034.

  17. 17.

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv, 391, 85–100.

  18. 18.

    Dubois, J.-M., Ouanounou, G., & Rouzaire-Dubois, B. (2009). The Boltzmann equation in molecular biology. Progress in Biophysics and Molecular Biology, 99(2–3), 87–93.

  19. 19.

    Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

  20. 20.

    Yang, L., Soonpaa, M. H., Adler, E. D., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.

  21. 21.

    Zhou, Y. Y., Cheng, H., Song, L.-S., Wang, D., Lakatta, E. G., & Xiao, R.-P. (1999). Spontaneous β2-adrenergic signaling fails to modulate L-type Ca2+ current in mouse ventricular myocytes. Molecular Pharmacology, 56(3), 485–493.

  22. 22.

    Hatano, S., Yamashita, T., Sekiguchi, A., et al. (2006). Molecular and electrophysiological differences in the L-type Ca2+ channel of the atrium and ventricle of rat hearts. Circulation Journal, 70(5), 610–614.

  23. 23.

    García, J., & Beam, K. G. (1994). Measurement of calcium transients and slow calcium current in myotubes. Journal of General Physiology, 103, 107–123.

  24. 24.

    Alden, K. J., & García, J. (2002). Dissociation of charge movement from calcium release and calcium current in skeletal myotubes by gabapentin. American Journal of Physiology - Cell Physiology, 283, C941–C949.

  25. 25.

    García, J., Tanabe, T., & Beam, K. G. (1994). Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. Journal of General Physiology, 103, 125–147.

  26. 26.

    Kawano, S., Shoji, S., Ichinose, S., Yamagata, K., Tagami, M., & Hiraoka, M. (2002). Characterization of Ca2+ signaling pathways in human mesenchymal stem cells. Cell Calcium, 32(4), 165–174.

  27. 27.

    Heubach, J. F., Graf, E. M., Leutheuser, J., et al. (2003). Electrophysiological properties of human mesenchymal stem cells. Journal of Physiology, 554(3), 659–672.

  28. 28.

    Li, G. R., Sun, H., Deng, X., & Lau, C. P. (2005). Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells, 23(3), 371–382.

  29. 29.

    Chaudhari, N., & Beam, K. G. (1993). mRNA for cardiac calcium channel is expressed during development of skeletal muscle. Developmental Biology, 155(2), 507–515.

  30. 30.

    Berthier, C., Monteil, A., Lory, P., & Strube, C. (2002). Alpha(1H) mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice. Journal of Physiology, 539(3), 681–691.

  31. 31.

    Adams, B. A., & Beam, K. G. (1989). A novel calcium current in dysgenic skeletal muscle. Journal of General Physiology, 94, 429–444.

  32. 32.

    Adams, B. A., & Beam, K. G. (1991). Contractions of dysgenic skeletal muscle triggered by a potentiated, endogenous calcium current. Journal of General Physiology, 97, 687–696.

Download references

Acknowledgements

The authors want to thank Santipongse Chatchavalvanich for his help with the initial experiments. This work was funded by NIH training grant (2 T32 HL7692-21; PI: Solaro, R. J.) and by the Illinois Department of Public Health (P.I. D.L. Geenen), NHLBI (R01 HL071046; P.I. D.L. Geenen), and Muscular Dystrophy Association, Inc. (P.I. J. García).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Correspondence to Jesús García.

Additional information

David L. Geenen and Jesús García Co-senior authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 15450 kb)

(MPG 10804 kb)

(MPG 12534 kb)

ESM 1

(MPG 15450 kb)

ESM 2

(MPG 10804 kb)

ESM 2

(MPG 12534 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grajales, L., Lach, L.E., Janisch, P. et al. Temporal Expression of Calcium Channel Subunits in Satellite Cells and Bone Marrow Mesenchymal Cells. Stem Cell Rev and Rep 11, 408–422 (2015). https://doi.org/10.1007/s12015-014-9566-4

Download citation

Keywords

  • Calcium channels
  • Mesenchymal stem cells
  • Satellite cells
  • Cardiac myogenesis
  • Skeletal myogenesis
  • Calcium release
  • Bone morphogenetic protein-4