Stem Cell Reviews and Reports

, Volume 11, Issue 3, pp 423–441 | Cite as

Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells

  • F. M. Abomaray
  • M. A. Al Jumah
  • B. Kalionis
  • A. S. AlAskar
  • S. Al Harthy
  • D. Jawdat
  • A. Al Khaldi
  • A. Alkushi
  • B. A. Knawy
  • M. H. AbumareeEmail author



Mesenchymal stem cells derived from the chorionic villi of human term placenta (pMSCs) have drawn considerable interest because of their multipotent differentiation potential and their immunomodulatory capacity. These properties are the foundation for their clinical application in the fields of stem cell transplantation and regenerative medicine. Previously, we showed that pMSCs induce an anti-inflammatory phenotype in human macrophages. In this study, we determined whether pMSCs modify the differentiation and maturation of human monocytes into dendritic cells (DCs). The consequences on dendritic function and on T cell proliferation were also investigated.


Interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF) were used to stimulate the differentiation of monocytes into immature dendritic cells (iDCs), which were subsequently co-cultured with pMSCs. Lipopolysaccharide (LPS) was used to induce maturation of iDCs into mature dendritic cells (mDCs). Flow cytometry and enzyme-linked immunosorbent assays (ELISA) were used to quantify the effect pMSC co-culturing on DC differentiation using CD1a, a distinctive marker of DCs, as well as other molecules important in the immune functions of DCs. The phagocytic activity of iDCs co-cultured with pMSCs, and the effects of iDCs and mDC stimulation on T cell proliferation, were also investigated.


Monocyte differentiation into iDCs was inhibited when co-cultured with pMSCs and maturation of iDCs by LPS treatment was also prevented in the presence of pMSCs as demonstrated by reduced expression of CD1a and CD83, respectively. The inhibitory effect of pMSCs on iDC differentiation was dose dependent. In addition, pMSC co-culture with iDCs and mDCs resulted in both phenotypic and functional changes as shown by reduced expression of costimulatory molecules (CD40, CD80, CD83 and CD86) and reduced capacity to stimulate CD4+ T cell proliferation. In addition, pMSC co-culture increased the surface expression of major histocompatibility complex (MHC-II) molecules on iDCs but decreased MHC-II expression on mDCs. Moreover, pMSC co-culture with iDCs or mDCs increased the expression of immunosuppressive molecules [B7H3, B7H4, CD273, CD274 and indoleamine-pyrrole 2,3-dioxygenase (IDO). Additionally, the secretion of IL-12 and IL-23 by iDCs and mDCs co-cultured with pMSCs was decreased. Furthermore, pMSC co-culture with mDCs decreased the secretion of IL-12 and INF-γ whilst increasing the secretion of IL-10 in a T cell proliferation experiment. Finally, pMSC co-culture with iDCs induced the phagocytic activity of iDCs.


We have shown that pMSCs have an inhibitory effect on the differentiation, maturation and function of DCs, as well as on the proliferation of T cells, suggesting that pMSCs can control the immune responses at multiple levels.


Chorionic villi mesenchymal stem cells Immune modulation Dendritic cells T cell proliferation Inflammation cells 



We thank the staff and patients of the Delivery Unit, King Abdul Aziz Medical City for their help in obtaining placentae. This study was supported by grants from King Abdulla International Medical Research Centre (Grant No. RC08/114) and King Abdulaziz City for Science and Technology (Grant No. ARP-29-186). Bill Kalionis was supported by NHMRC Grant No. 509178.

Conflict of interest

The authors declare no potential conflicts of interest.


  1. 1.
    Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.Google Scholar
  2. 2.
    Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39, 678–683.CrossRefPubMedGoogle Scholar
  3. 3.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.CrossRefPubMedGoogle Scholar
  4. 4.
    Tanaka, M., & Miyajima, A. (2012). Identification and isolation of adult liver stem/progenitor cells. Methods in Molecular Biology, 826, 25–32.PubMedGoogle Scholar
  5. 5.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 52, 2521–2529.CrossRefPubMedGoogle Scholar
  6. 6.
    Roubelakis, M. G., Pappa, K. I., Bitsika, V., et al. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16, 931–952.CrossRefPubMedGoogle Scholar
  7. 7.
    Anker PS, I. ’t., Scherjon, S. A., Kleijburg-vander Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22, 1338–1345.CrossRefGoogle Scholar
  8. 8.
    Kanematsu, D., Shofuda, T., Yamamoto, A., et al. (2011). Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation; Research in Biological Diversity, 82, 77–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Pelagiadis, I., Relakis, K., Kalmanti, L., & Dimitriou, H. (2012). CD133 immunomagnetic separation: effectiveness of the method for CD133(+) isolation from umbilical cord blood. Cytotherapy, 14, 701–706.CrossRefPubMedGoogle Scholar
  10. 10.
    Gronthos, S., Arthur, A., Bartold, P. M., & Shi, S. (2011). A method to isolate and culture expand human dental pulp stem cells. Methods in Molecular Biology, 698, 107–121.PubMedGoogle Scholar
  11. 11.
    Abumaree, M.H., Al Jumah, M.A., Kalionis, B., et al. (2013). Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Reviews, 9(1), 16–31. doi:  10.1007/s12015-012-9385-4.
  12. 12.
    Castrechini, N. M., Murthi, P., Gude, N. M., et al. (2010). Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta, 31, 203–212.CrossRefPubMedGoogle Scholar
  13. 13.
    Abumaree, M. H., Al Jumah, M. A., Kalionis, B., et al. (2013). Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Reviews, 9, 16–31.CrossRefPubMedGoogle Scholar
  14. 14.
    Al Jumah, M. A., & Abumaree, M. H. (2012). The immunomodulatory and neuroprotective effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): a model of Multiple Sclerosis (MS). International Journal of Molecular Sciences, 13, 9298–9331.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Abumaree, M. H., Al Jumah, M. A., Kalionis, B., et al. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews, 9, 620–641.CrossRefPubMedGoogle Scholar
  16. 16.
    Li, Y. P., Paczesny, S., Lauret, E., et al. (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. Journal of Immunology, 180, 1598–1608.CrossRefGoogle Scholar
  17. 17.
    Liu, W. H., Liu, J. J., Wu, J., et al. (2013). Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PloS One, 8, e55487.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. Journal of Immunology, 177, 2080–2087.CrossRefGoogle Scholar
  19. 19.
    Ramasamy, R., Fazekasova, H., Lam, E. W., Soeiro, I., Lombardi, G., & Dazzi, F. (2007). Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83, 71–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Saeidi, M., Masoud, A., Shakiba, Y., et al. (2013). Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iranian Journal of Allergy, Asthma, and Immunology, 12, 37–49.PubMedGoogle Scholar
  21. 21.
    Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.CrossRefPubMedGoogle Scholar
  22. 22.
    Kronsteiner, B., Peterbauer-Scherb, A., Grillari-Voglauer, R., et al. (2011). Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cellular Immunology, 267, 30–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Ivanova-Todorova, E., Bochev, I., Mourdjeva, M., et al. (2009). Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters, 126, 37–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Romani, N., Gruner, S., Brang, D., et al. (1994). Proliferating dendritic cell progenitors in human blood. The Journal of Experimental Medicine, 180, 83–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Sallusto, F., & Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. The Journal of Experimental Medicine, 179, 1109–1118.CrossRefPubMedGoogle Scholar
  26. 26.
    Chapuis, F., Rosenzwajg, M., Yagello, M., Ekman, M., Biberfeld, P., & Gluckman, J. C. (1997). Differentiation of human dendritic cells from monocytes in vitro. European Journal of Immunology, 27, 431–441.CrossRefPubMedGoogle Scholar
  27. 27.
    Banchereau, J., Briere, F., Caux, C., et al. (2000). Immunobiology of dendritic cells. Annual Review of Immunology, 18, 767–811.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu, Y. J., Kanzler, H., Soumelis, V., & Gilliet, M. (2001). Dendritic cell lineage, plasticity and cross-regulation. Nature Immunology, 2, 585–589.CrossRefPubMedGoogle Scholar
  29. 29.
    Mellman, I., & Steinman, R. M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell, 106, 255–258.CrossRefPubMedGoogle Scholar
  30. 30.
    Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.CrossRefPubMedGoogle Scholar
  31. 31.
    Lu, L., Woo, J., Rao, A. S., et al. (1994). Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. The Journal of Experimental Medicine, 179, 1823–1834.CrossRefPubMedGoogle Scholar
  32. 32.
    Lu, L., McCaslin, D., Starzl, T. E., & Thomson, A. W. (1995). Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2-) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation, 60, 1539–1545.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Fu, F., Li, Y., Qian, S., et al. (1996). Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation, 62, 659–665.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C., & Bhardwaj, N. (2001). Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. The Journal of Experimental Medicine, 193, 233–238.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., & Enk, A. H. (2000). Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. The Journal of Experimental Medicine, 192, 1213–1222.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hackstein, H., Morelli, A. E., & Thomson, A. W. (2001). Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends in Immunology, 22, 437–442.CrossRefPubMedGoogle Scholar
  37. 37.
    Dubois, B., Bridon, J. M., Fayette, J., et al. (1999). Dendritic cells directly modulate B cell growth and differentiation. Journal of Leukocyte Biology, 66, 224–230.PubMedGoogle Scholar
  38. 38.
    Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G., & Trinchieri, G. (2002). Reciprocal activating interaction between natural killer cells and dendritic cells. The Journal of Experimental Medicine, 195, 327–333.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Josien, R., Heslan, M., Brouard, S., Soulillou, J. P., & Cuturi, M. C. (1998). Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion. Blood, 92, 4539–4544.PubMedGoogle Scholar
  40. 40.
    Waldmann, H. (1999). Transplantation tolerance-where do we stand? Nature Medicine, 5, 1245–1248.CrossRefPubMedGoogle Scholar
  41. 41.
    Sallusto, F., & Lanzavecchia, A. (1999). Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. The Journal of Experimental Medicine, 189, 611–614.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Abumaree, M. H., Chamley, L. W., Badri, M., & El-Muzaini, M. F. (2012). Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? Journal of Reproductive Immunology, 94, 131–141.CrossRefPubMedGoogle Scholar
  43. 43.
    Duluc, D., Delneste, Y., Tan, F., et al. (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood, 110, 4319–4330.CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng, P., Corzo, C. A., Luetteke, N., et al. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine, 205, 2235–2249.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Oosterhoff, D., Lougheed, S., van de Ven, R., et al. (2012). Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition. Oncoimmunology, 1, 649–658.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews Immunology, 4, 941–952.CrossRefPubMedGoogle Scholar
  47. 47.
    Lankford, C. S., & Frucht, D. M. (2003). A unique role for IL-23 in promoting cellular immunity. Journal of Leukocyte Biology, 73, 49–56.CrossRefPubMedGoogle Scholar
  48. 48.
    Anton, K., Banerjee, D., & Glod, J. (2012). Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PloS One, 7, e35036.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Magatti, M., De Munari, S., Vertua, E., et al. (2009). Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplantation, 18, 899–914.CrossRefPubMedGoogle Scholar
  50. 50.
    Lenschow, D. J., Walunas, T. L., & Bluestone, J. A. (1996). CD28/B7 system of T cell costimulation. Annual Review of Immunology, 14, 233–258.CrossRefPubMedGoogle Scholar
  51. 51.
    Quezada, S. A., Jarvinen, L. Z., Lind, E. F., & Noelle, R. J. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology, 22, 307–328.CrossRefPubMedGoogle Scholar
  52. 52.
    Zheng, Y., Manzotti, C. N., Liu, M., Burke, F., Mead, K. I., & Sansom, D. M. (2004). CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. Journal of Immunology, 172, 2778–2784.CrossRefGoogle Scholar
  53. 53.
    Mahnke, K., Schmitt, E., Bonifaz, L., Enk, A. H., & Jonuleit, H. (2002). Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunology and Cell Biology, 80, 477–483.CrossRefPubMedGoogle Scholar
  54. 54.
    Sharpe, A. H., & Freeman, G. J. (2002). The B7-CD28 superfamily. Nature Reviews Immunology, 2, 116–126.CrossRefPubMedGoogle Scholar
  55. 55.
    van Kooten, C., & Banchereau, J. (2000). CD40-CD40 ligand. Journal of Leukocyte Biology, 67, 2–17.PubMedGoogle Scholar
  56. 56.
    Gudmundsdottir, H., & Turka, L. A. (1999). T cell costimulatory blockade: new therapies for transplant rejection. Journal of the American Society of Nephrology: JASN, 10, 1356–1365.PubMedGoogle Scholar
  57. 57.
    Wekerle, T., Kurtz, J., Bigenzahn, S., Takeuchi, Y., & Sykes, M. (2002). Mechanisms of transplant tolerance induction using costimulatory blockade. Current Opinion in Immunology, 14, 592–600.CrossRefPubMedGoogle Scholar
  58. 58.
    Li, Y., Li, X. C., Zheng, X. X., Wells, A. D., Turka, L. A., & Strom, T. B. (1999). Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Medicine, 5, 1298–1302.CrossRefPubMedGoogle Scholar
  59. 59.
    Ou, D., Wang, X., Metzger, D. L., et al. (2006). Suppression of human T-cell responses to beta-cells by activation of B7-H4 pathway. Cell Transplantation, 15, 399–410.CrossRefPubMedGoogle Scholar
  60. 60.
    Ueno, T., Yeung, M. Y., McGrath, M., et al. (2012). Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses. European Journal of Immunology, 42, 2343–2353.CrossRefPubMedGoogle Scholar
  61. 61.
    Yamaura, K., Watanabe, T., Boenisch, O., et al. (2010). In vivo function of immune inhibitory molecule B7-H4 in alloimmune responses. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 10, 2355–2362.CrossRefGoogle Scholar
  62. 62.
    Wang, X., Hao, J., Metzger, D. L., et al. (2009). Local expression of B7-H4 by recombinant adenovirus transduction in mouse islets prolongs allograft survival. Transplantation, 87, 482–490.CrossRefPubMedGoogle Scholar
  63. 63.
    Latchman, Y., Wood, C. R., Chernova, T., et al. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2, 261–268.CrossRefPubMedGoogle Scholar
  64. 64.
    Tseng, S. Y., Otsuji, M., Gorski, K., et al. (2001). B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. The Journal of Experimental Medicine, 193, 839–846.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Carter, L., Fouser, L. A., Jussif, J., et al. (2002). PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. European Journal of Immunology, 32, 634–643.CrossRefPubMedGoogle Scholar
  66. 66.
    Freeman, G. J., Long, A. J., Iwai, Y., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 192, 1027–1034.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Ozkaynak, E., Wang, L., Goodearl, A., et al. (2002). Programmed death-1 targeting can promote allograft survival. Journal of Immunology, 169, 6546–6553.CrossRefGoogle Scholar
  68. 68.
    Munn, D. H., Sharma, M. D., Baban, B., et al. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 22, 633–642.CrossRefPubMedGoogle Scholar
  69. 69.
    Huang, L., Baban, B., Johnson, B. A., 3rd, & Mellor, A. L. (2010). Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. International Reviews of Immunology, 29, 133–155.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Belladonna, M. L., Puccetti, P., Orabona, C., et al. (2007). Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation, 84, S17–S20.CrossRefPubMedGoogle Scholar
  71. 71.
    Brenk, M., Scheler, M., Koch, S., et al. (2009). Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. Journal of Immunology, 183, 145–154.CrossRefGoogle Scholar
  72. 72.
    Grohmann, U., Orabona, C., Fallarino, F., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3, 1097–1101.CrossRefPubMedGoogle Scholar
  73. 73.
    Munn, D. H., Zhou, M., Attwood, J. T., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281, 1191–1193.CrossRefPubMedGoogle Scholar
  74. 74.
    Van Parijs, L., Perez, V. L., Biuckians, A., Maki, R. G., London, C. A., & Abbas, A. K. (1997). Role of interleukin 12 and costimulators in T cell anergy in vivo. The Journal of Experimental Medicine, 186, 1119–1128.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Boussiotis, V. A., Tsai, E. Y., Yunis, E. J., et al. (2000). IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. The Journal of Clinical Investigation, 105, 1317–1325.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Albert, M. L., Pearce, S. F., Francisco, L. M., et al. (1998). Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. The Journal of Experimental Medicine, 188, 1359–1368.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Eliopoulos, N., Francois, M., Boivin, M. N., Martineau, D., & Galipeau, J. (2008). Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Research, 68, 4810–4818.CrossRefPubMedGoogle Scholar
  78. 78.
    Xue, Q., Luan, X. Y., Gu, Y. Z., et al. (2010). The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells and Development, 19, 27–38.CrossRefPubMedGoogle Scholar
  79. 79.
    Djouad, F., Charbonnier, L. M., Bouffi, C., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25, 2025–2032.CrossRefPubMedGoogle Scholar
  80. 80.
    Reyes-Moreno, C., Frenette, G., Boulanger, J., Lavergne, E., Govindan, M. V., & Koutsilieris, M. (1995). Mediation of glucocorticoid receptor function by transforming growth factor beta I expression in human PC-3 prostate cancer cells. The Prostate, 26, 260–269.CrossRefPubMedGoogle Scholar
  81. 81.
    Miller, A. H., Pariante, C. M., & Pearce, B. D. (1999). Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Advances in Experimental Medicine and Biology, 461, 107–116.PubMedGoogle Scholar
  82. 82.
    Chiesa, S., Morbelli, S., Morando, S., et al. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 17384–17389.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. M. Abomaray
    • 1
  • M. A. Al Jumah
    • 1
  • B. Kalionis
    • 2
  • A. S. AlAskar
    • 1
    • 3
  • S. Al Harthy
    • 4
  • D. Jawdat
    • 1
    • 3
  • A. Al Khaldi
    • 3
  • A. Alkushi
    • 5
  • B. A. Knawy
    • 1
    • 3
  • M. H. Abumaree
    • 1
    • 5
    Email author
  1. 1.King Abdullah International Medical Research CenterRiyadhKingdom of Saudi Arabia
  2. 2.Department of Obstetrics and Gynaecology and Department of Perinatal Medicine Pregnancy Research Centre, Royal Women’s HospitalUniversity of MelbourneParkvilleAustralia
  3. 3.College of MedicineKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
  4. 4.King Abdulaziz City for Science and TechnologyRiyadhKingdom of Saudi Arabia
  5. 5.College of Science and Health ProfessionsKing Saud Bin Abdulaziz University for Health SciencesRiyadhKingdom of Saudi Arabia

Personalised recommendations