Stem Cell Reviews and Reports

, Volume 11, Issue 1, pp 133–149 | Cite as

Human adipose-Derived Mesenchymal Stem Cells Improve Motor Functions and are Neuroprotective in the 6-Hydroxydopamine-Rat Model for Parkinson’s Disease when Cultured in Monolayer Cultures but Suppress Hippocampal Neurogenesis and Hippocampal Memory Function when Cultured in Spheroids

  • Jürgen Berg
  • Manfred Roch
  • Jennifer Altschüler
  • Christine Winter
  • Anne Schwerk
  • Andreas Kurtz
  • Barbara SteinerEmail author


Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson´s disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.


Monolayer and sheproid cultured adipose-derived stem cells Parkinson’s disease Regeneration Plasticity 



The authors thank Renate Winter for excellent technical assistance. The study was funded by the EFRE grant of the Investitionsbank Berlin to BS.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest.


  1. 1.
    Hornykiewicz, O. (1982). Imbalance of brain monoamines and clinical disorders. Progress in Brain Research, 55, 419–429.CrossRefPubMedGoogle Scholar
  2. 2.
    Ehringer, H., & Hornykiewicz, O. (1960). Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klinische Wochenschrift, 38, 1236–1239.CrossRefPubMedGoogle Scholar
  3. 3.
    Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European Journal of Pharmacology, 5, 107–110.CrossRefPubMedGoogle Scholar
  4. 4.
    Schwarting, R. K., & Huston, J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275–331.CrossRefPubMedGoogle Scholar
  5. 5.
    Weintraub, D., Comella, C. L., & Horn, S. (2008). Parkinson’s disease–part 3: neuropsychiatric symptoms. The American Journal of Managed Care, 14, S59–S69.PubMedGoogle Scholar
  6. 6.
    Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurology, 5, 235–245.CrossRefGoogle Scholar
  7. 7.
    Suzuki, K., Okada, K., Wakuda, T., et al. (2010). Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS ONE, 5, e9260.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Baddeley, A. (1992). Working memory. Science, 255, 556–559.CrossRefPubMedGoogle Scholar
  9. 9.
    Perez, V., Marin, C., Rubio, A., Aguilar, E., Barbanoj, M., & Kulisevsky, J. (2009). Effect of the additional noradrenergic neurodegeneration to 6-OHDA-lesioned rats in levodopa-induced dyskinesias and in cognitive disturbances. Journal of Neural Transmission, 116, 1257–1266.CrossRefPubMedGoogle Scholar
  10. 10.
    Zweifel, L. S., Argilli, E., Bonci, A., & Palmiter, R. D. (2008). Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron, 59, 486–496.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zweifel, L. S., Parker, J. G., Lobb, C. J., et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106, 7281–7288.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hamilton, T. J., Wheatley, B. M., Sinclair, D. B., Bachmann, M., Larkum, M. E., & Colmers, W. F. (2010). Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 18185–18190.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Lennington, J. B., Pope, S., Goodheart, A. E., et al. (2011). Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 13078–13087.CrossRefGoogle Scholar
  14. 14.
    Yahr, M. D., Duvoisin, R. C., Schear, M. J., Barrett, R. E., & Hoehn, M. M. (1969). Treatment of parkinsonism with levodopa. Archives of Neurology, 21, 343–354.CrossRefPubMedGoogle Scholar
  15. 15.
    Lattanzi, W., Geloso, M.C., Saulnier, N., et al. (2011). Neurotrophic features of human adipose tissue-derived stromal cells: in vitro and in vivo studies. Journal of biomedicine & biotechnology, 2011, 468705.Google Scholar
  16. 16.
    Kang, S. K., Shin, M. J., Jung, J. S., Kim, Y. G., & Kim, C. H. (2006). Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells and Development, 15, 583–594.CrossRefPubMedGoogle Scholar
  17. 17.
    Chi, G. F., Kim, M. R., Kim, D. W., Jiang, M. H., & Son, Y. (2010). Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Experimental Neurology, 222, 304–317.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou, Y., Sun, M., Li, H., et al. (2013). Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy.Google Scholar
  19. 19.
    Kim, J. M., Lee, S. T., Chu, K., et al. (2007). Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Research, 1183, 43–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Kulikov, A. V., Stepanova, M. S., Stvolinsky, S. L., et al. (2008). Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic Acid in rats. Bulletin of Experimental Biology and Medicine, 145, 514–519.CrossRefPubMedGoogle Scholar
  21. 21.
    Anghileri, E., Marconi, S., Pignatelli, A., et al. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells and Development, 17, 909–916.CrossRefPubMedGoogle Scholar
  22. 22.
    Ashjian, P. H., Elbarbary, A. S., Edmonds, B., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111, 1922–1931.CrossRefPubMedGoogle Scholar
  23. 23.
    Cardozo, A., Ielpi, M., Gomez, D., & Argibay, P. (2010). Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expression, 14, 307–319.CrossRefPubMedGoogle Scholar
  24. 24.
    Dhar, S., Yoon, E. S., Kachgal, S., & Evans, G. R. (2007). Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Engineering, 13, 2625–2632.CrossRefPubMedGoogle Scholar
  25. 25.
    Jang, S., Cho, H. H., Cho, Y. B., Park, J. S., & Jeong, H. S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology, 11, 25.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.CrossRefPubMedGoogle Scholar
  27. 27.
    Baglioni, S., Francalanci, M., Squecco, R., et al. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 23, 3494–3505.CrossRefGoogle Scholar
  28. 28.
    Miller, R. H., Bai, L., Lennon, D. P., & Caplan, A. I. (2010). The potential of mesenchymal stem cells for neural repair. Discovery Medicine, 9, 236–242.PubMedGoogle Scholar
  29. 29.
    Orlacchio, A., Bernardi, G., & Martino, S. (2010). Stem cells and neurological diseases. Discovery Medicine, 9, 546–553.PubMedGoogle Scholar
  30. 30.
    Wei, X., Zhao, L., Zhong, J., et al. (2009). Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neuroscience letters, 462, 76–79.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, H. T., Liu, Z. L., Yao, X. Q., Yang, Z. J., & Xu, R. X. (2012). Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study. Cytotherapy, 14, 1203–1214.CrossRefPubMedGoogle Scholar
  32. 32.
    Reid, A. J., Sun, M., Wiberg, M., Downes, S., Terenghi, G., & Kingham, P. J. (2011). Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 199, 515–522.CrossRefPubMedGoogle Scholar
  33. 33.
    Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U., & Patel, N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics, 138, 155–175.CrossRefGoogle Scholar
  34. 34.
    Hellmann, M. A., Panet, H., Barhum, Y., Melamed, E., & Offen, D. (2006). Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neuroscience Letters, 395, 124–128.CrossRefPubMedGoogle Scholar
  35. 35.
    Bouchez, G., Sensebe, L., Vourc’h, P., et al. (2008). Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochemistry International, 52, 1332–1342.CrossRefPubMedGoogle Scholar
  36. 36.
    Venkataramana, N. K., Kumar, S. K., Balaraju, S., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational research: the journal of laboratory and clinical medicine, 155, 62–70.CrossRefGoogle Scholar
  37. 37.
    Bartosh, T. J., Ylostalo, J. H., Mohammadipoor, A., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 13724–13729.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Cheng, N. C., Wang, S., & Young, T. H. (2012). The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 33, 1748–1758.CrossRefPubMedGoogle Scholar
  39. 39.
    Suon, S., Yang, M., & Iacovitti, L. (2006). Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson’s disease. Brain Research, 1106, 46–51.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Wang, W., Itaka, K., Ohba, S., et al. (2009). 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials, 30, 2705–2715.CrossRefPubMedGoogle Scholar
  41. 41.
    Schwerk, A., Altschüler, J., Roch, et al. (2013). (in press). Human adipose-derived mesenchymal stem cells induce subventricular neurogenesis and transdifferentiate into endothelial cells in the 6-hydroxydopamine rat model for Parkinson’s disease. PLoS One.Google Scholar
  42. 42.
    Gundersen, H. J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of Microscopy, 143, 3–45.CrossRefPubMedGoogle Scholar
  43. 43.
    West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231, 482–497.CrossRefPubMedGoogle Scholar
  44. 44.
    Gundersen, H. J., Jensen, E. B., Kieu, K., & Nielsen, J. (1999). The efficiency of systematic sampling in stereology–reconsidered. Journal of Microscopy, 193, 199–211.CrossRefPubMedGoogle Scholar
  45. 45.
    Winter, C., Djodari-Irani, A., Sohr, R., et al. (2009). Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. The international journal of neuropsychopharmacology/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum, 12, 513–524.CrossRefGoogle Scholar
  46. 46.
    Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.CrossRefPubMedGoogle Scholar
  47. 47.
    Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.CrossRefPubMedGoogle Scholar
  48. 48.
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods, 25, 402–408.CrossRefPubMedGoogle Scholar
  50. 50.
    Zavan, B., Vindigni, V., Gardin, C., et al. (2010). Neural potential of adipose stem cells. Discovery Medicine, 10, 37–43.PubMedGoogle Scholar
  51. 51.
    Coquery, N., Blesch, A., Stroh, A., et al. (2012). Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy, 14, 1041–1053.CrossRefPubMedGoogle Scholar
  52. 52.
    Snyder, B. R., Chiu, A. M., Prockop, D. J., & Chan, A. W. (2010). Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS ONE, 5, e9347.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Hyman, C., Hofer, M., Barde, Y. A., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.CrossRefPubMedGoogle Scholar
  54. 54.
    Levivier, M., Przedborski, S., Bencsics, C., & Kang, U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 15, 7810–7820.Google Scholar
  55. 55.
    Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638–647.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119, 7–35.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Fernandez-Fernandez, S., Almeida, A., & Bolanos, J. P. (2012). Antioxidant and bioenergetic coupling between neurons and astrocytes. The Biochemical Journal, 443, 3–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A., & Scooper, A. J. (1994). Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. Journal of Neurochemistry, 62, 45–53.CrossRefPubMedGoogle Scholar
  59. 59.
    Calkins, M. J., Johnson, D. A., Townsend, J. A., et al. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxidants & Redox Signaling, 11, 497–508.CrossRefGoogle Scholar
  60. 60.
    Jakel, R. J., Kern, J. T., Johnson, D. A., & Johnson, J. A. (2005). Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicological sciences : an official journal of the Society of Toxicology, 87, 176–186.CrossRefGoogle Scholar
  61. 61.
    Jakel, R. J., Townsend, J. A., Kraft, A. D., & Johnson, J. A. (2007). Nrf2-mediated protection against 6-hydroxydopamine. Brain Research, 1144, 192–201.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Burton, N. C., Kensler, T. W., & Guilarte, T. R. (2006). In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology, 27, 1094–1100.CrossRefPubMedGoogle Scholar
  63. 63.
    Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6, 1127–1134.CrossRefPubMedGoogle Scholar
  64. 64.
    Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neuroscience, 7, 1233–1241.CrossRefPubMedGoogle Scholar
  65. 65.
    Steiner, B., Klempin, F., Wang, L., Kott, M., Kettenmann, H., & Kempermann, G. (2006). Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia, 54, 805–814.CrossRefPubMedGoogle Scholar
  66. 66.
    Kronenberg, G., Reuter, K., Steiner, B., et al. (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. The Journal of Comparative Neurology, 467, 455–463.CrossRefPubMedGoogle Scholar
  67. 67.
    Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.CrossRefPubMedGoogle Scholar
  68. 68.
    Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40, 140–155.CrossRefPubMedGoogle Scholar
  69. 69.
    Little, A. R., & O’Callagha, J. P. (2001). Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology, 22, 607–618.CrossRefPubMedGoogle Scholar
  70. 70.
    Akiyama, H., & Mcgeer, P. L. (1989). Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Research, 489, 247–253.CrossRefPubMedGoogle Scholar
  71. 71.
    Marinova-Mutafchieva, L., Sadeghian, M., Broom, L., Davis, J. B., Medhurst, A. D., & Dexter, D. T. (2009). Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. Journal of Neurochemistry, 110, 966–975.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu, D. C., Jackson-Lewis, V., Vila, M., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22, 1763–71.Google Scholar
  73. 73.
    Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003). Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 17, 1954–1956.Google Scholar
  74. 74.
    Kim, Y. S., & Oh, T. H. (2006). Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Experimental & Molecular Medicine, 38, 333–347.CrossRefGoogle Scholar
  75. 75.
    Baker, S. A., Baker, K. A., & Hagg, T. (2004). Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. The European Journal of Neuroscience, 20, 575–579.CrossRefPubMedGoogle Scholar
  76. 76.
    Freundlieb, N., Francois, C., Tande, D., Oertel, W. H., Hirsch, E. C., & Hoglinger, G. U. (2006). Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. The Journal of neuroscience: the official journal of the Society for Neuroscience, 26, 2321–2325.CrossRefGoogle Scholar
  77. 77.
    Winner, B., Geyer, M., Couillard-Despres, S., et al. (2006). Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Experimental Neurology, 197, 113–121.CrossRefPubMedGoogle Scholar
  78. 78.
    Borta, A., & Hoglinger, G. U. (2007). Dopamine and adult neurogenesis. Journal of Neurochemistry, 100, 587–595.CrossRefPubMedGoogle Scholar
  79. 79.
    Coronas, V., Bantubungi, K., Fombonne, J., Krantic, S., Schiffmann, S. N., & Roger, M. (2004). Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. Journal of Neurochemistry, 91, 1292–1301.CrossRefPubMedGoogle Scholar
  80. 80.
    Hoglinger, G. U., Rizk, P., Muriel, M. P., et al. (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 7, 726–735.CrossRefPubMedGoogle Scholar
  81. 81.
    Klaissle, P., Lesemann, A., Huehnchen, P., Hermann, A., Storch, A., & Steiner, B. (2012). Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neuroscience, 13, 132.CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Steiner, B., Winter, C., Hosman, K., et al. (2006). Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Experimental Neurology, 199, 291–300.CrossRefPubMedGoogle Scholar
  83. 83.
    Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y., & Gould, E. (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12, 578–584.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.CrossRefPubMedGoogle Scholar
  85. 85.
    Alexander, G. E., Delong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.CrossRefPubMedGoogle Scholar
  86. 86.
    Bartosh T.J. 1, Ylostalo J. H. (2014). Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol 28:Unit 2B.6Google Scholar
  87. 87.
    Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110(21), 3378–3383.CrossRefPubMedGoogle Scholar
  88. 88.
    Coquery, N., Blesch, A., Stroh, A., Fernandez-Klett, F., Klein, J., Winter, C., & Priller, J. (2012). Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy, 14(9), 1041–1053.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jürgen Berg
    • 1
  • Manfred Roch
    • 2
  • Jennifer Altschüler
    • 1
  • Christine Winter
    • 3
  • Anne Schwerk
    • 1
  • Andreas Kurtz
    • 2
  • Barbara Steiner
    • 1
    Email author
  1. 1.Department of NeurologyCharité University Medicine Berlin, CCMBerlinGermany
  2. 2.Institute for ImmunologyCharité University Medicine BerlinBerlinGermany
  3. 3.Department of Psychiatry, University Hospital Carl Gustav CarusTechnical University DresdenDresdenGermany

Personalised recommendations