Advertisement

Stem Cell Reviews and Reports

, Volume 11, Issue 1, pp 87–95 | Cite as

Genome-Wide Demethylation by 5-aza-2’-Deoxycytidine Alters the Cell Fate of Stem/Progenitor Cells

  • Yang Zhou
  • Zhengqing HuEmail author
Article

Abstract

DNA methyltransferase (DNMT) inhibitor 5-aza-2’-deoxycytidine (5-aza-CdR) is able to cause DNA demethylation in the genome and induce the expression of silenced genes. Whether DNA demethylation can affect the gene expression of stem/progenitor cells has not been understood. Mouse utricle epithelia-derived progenitor cells (MUCs), which possess stem cell features as previously described, exhibit a potential DNA methylation status in the genome. In this study, MUCs were treated with 5-aza-CdR to determine whether DNMT inhibitor is able to induce the differentiation of MUCs. With 5-aza-CdR treatment for 72 hr, MUCs expressed epithelial genes including Cdh1, Krt8, Krt18, and Dsp. Further, hair cell genes Myo7a and Myo6 increased their expressions in response to 5-aza-CdR treatment. The decrease in the global methylated DNA values after 5-aza-CdR treatment indicated a significant DNA demethylation in the genome of MUCs, which may contribute to remarkably increased expression of epithelial genes and hair cell genes. The progenitor MUCs then turned into an epithelial-like hair cell fate with the expression of both epithelial and hair cell genes. This study suggests that stem cell differentiation can be stimulated by DNA demethylation, which may open avenues for studying stem cell fate induction using epigenetic approaches.

Keywords

5-aza-2’-deoxycytidine Demethylation Epigenetics Epithelial Hair cell Methylation Prosensory cell Stem cell 

Notes

Acknowledgments

The authors thank Neelkumar Patel for his technical support and Jue Wang, Fei Nei, and Xiaoyang Li for valuable comments to the manuscript. The study is supported by NIDCD/NIH (1 R01 DC013275) and the Grants Plus Program from the Wayne State University.

Conflict of Interest

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Shi, F., & Edge, A. S. (2013). Prospects for replacement of auditory neurons by stem cells. Hearing Research, 297, 106–112.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Hu, Z., & Ulfendahl, M. (2013). The potential of stem cells for the restoration of auditory function in humans. Regenerative Medicine, 8(3), 309–318.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Groves, A. K., Zhang, K. D., & Fekete, D. M. (2013). The genetics of hair cell development and regeneration. Annual Review of Neuroscience, 36, 361–381.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Ronaghi, M., Nasr, M., & Heller, S. (2012). Concise review: Inner ear stem cells–an oxymoron, but why? Stem Cells, 30(1), 69–74.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Cotanche, D. A., & Kaiser, C. L. (2010). Hair cell fate decisions in cochlear development and regeneration. Hearing Research, 266(1–2), 18–25.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Okano, T., & Kelley, M. W. (2012). Stem cell therapy for the inner ear: recent advances and future directions. Trends in Amplification, 16(1), 4–18.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Li, H., Liu, H., & Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299.CrossRefPubMedGoogle Scholar
  8. 8.
    Oshima, K., Grimm, C. M., Corrales, C. E., et al. (2007). Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. Journal of the Association for Research in Otolaryngology, 8(1), 18–31.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.CrossRefPubMedGoogle Scholar
  10. 10.
    Mizutari, K., Fujioka, M., Hosoya, M., et al. (2013). Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron, 77(1), 58–69.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Kelley, M. W., Talreja, D. R., & Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. The Journal of Neuroscience, 15(4), 3013–3026.PubMedGoogle Scholar
  12. 12.
    Zhang, L., & Hu, Z. (2012). Sensory epithelial cells acquire features of prosensory cells via epithelial to mesenchymal transition. Stem Cells and Development, 21(10), 1812–1821.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Oesterle, E. C., Campbell, S., Taylor, R. R., Forge, A., & Hume, C. R. (2008). Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. Journal of the Association for Research in Otolaryngology, 9(1), 65–89.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Batts, S. A., Shoemaker, C. R., & Raphael, Y. (2009). Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hearing Research, 249(1–2), 15–22.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Kelley, M. W. (2006). Regulation of cell fate in the sensory epithelia of the inner ear. Nature Reviews Neuroscience, 7(11), 837–849.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang, L., & Hu, Z. (2012). Sensory Epithelial Cells Acquire Features of Prosensory Cells Via Epithelial to Mesenchymal Transition. Stem Cells and Development, 21(10), 1812–1821.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Barald, K. F., & Kelley, M. W. (2004). From placode to polarization: new tunes in inner ear development. Development, 131(17), 4119–4130.CrossRefPubMedGoogle Scholar
  18. 18.
    Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.CrossRefPubMedGoogle Scholar
  19. 19.
    Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532), 1068–1070.CrossRefPubMedGoogle Scholar
  20. 20.
    Razin, A., & Cedar, H. (1991). DNA methylation and gene expression. Microbiological Reviews, 55(3), 451–458.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16(1), 6–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Dodge, J. E., Ramsahoye, B. H., Wo, Z. G., Okano, M., & Li, E. (2002). De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 289(1–2), 41–48.CrossRefPubMedGoogle Scholar
  23. 23.
    Ghoshal, K., Datta, J., Majumder, S., et al. (2005). 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Molecular and Cellular Biology, 25(11), 4727–4741.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31(2), 89–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Auclair, G., & Weber, M. (2012). Mechanisms of DNA methylation and demethylation in mammals. Biochimie, 94(11), 2202–2211.CrossRefPubMedGoogle Scholar
  26. 26.
    Phillips, T. (2008). The role of methylation in gene expression. Nature Education, 1(1), 116.Google Scholar
  27. 27.
    Sigalotti, L., Fratta, E., Coral, S., et al. (2007). Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. Journal of Cellular Physiology, 212(2), 330–344.CrossRefPubMedGoogle Scholar
  28. 28.
    Sigalotti, L., Fratta, E., Coral, S., & Maio, M. (2014). Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacology and Therapeutics, 142(3), 339–350.CrossRefPubMedGoogle Scholar
  29. 29.
    Christman, J. K. (2002). 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21(35), 5483–5495.CrossRefPubMedGoogle Scholar
  30. 30.
    Mossman, D., Kim, K. T., & Scott, R. J. (2010). Demethylation by 5-aza-2’-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer, 10, 366.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Patra, A., Deb, M., Dahiya, R., & Patra, S. K. (2011). 5-Aza-2’-deoxycytidine stress response and apoptosis in prostate cancer. Clinical Epigenetics, 2(2), 339–348.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Corn, P. G., Smith, B. D., Ruckdeschel, E. S., Douglas, D., Baylin, S. B., & Herman, J. G. (2000). E-cadherin expression is silenced by 5’ CpG island methylation in acute leukemia. Clinical Cancer Research, 6(11), 4243–4248.PubMedGoogle Scholar
  33. 33.
    Ling, Z. Q., Li, P., Ge, M. H., et al. (2011). Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. International Journal of Molecular Medicine, 27(5), 625–635.CrossRefPubMedGoogle Scholar
  34. 34.
    Lin, S. L. (2011). Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells, 29(11), 1645–1649.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Yan, X., Ehnert, S., Culmes, M., et al. (2014). 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PloS One, 9(3), e90846.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F., & Thykjaer, T. (2002). Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2’-deoxycytidine. Cancer Research, 62(4), 961–966.PubMedGoogle Scholar
  37. 37.
    Bennett, L. B., Schnabel, J. L., Kelchen, J. M., et al. (2009). DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes, Chromosomes & Cancer, 48(9), 828–841.CrossRefGoogle Scholar
  38. 38.
    Almstedt, M., Blagitko-Dorfs, N., Duque-Afonso, J., et al. (2010). The DNA demethylating agent 5-aza-2’-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leukemia Research, 34(7), 899–905.CrossRefPubMedGoogle Scholar
  39. 39.
    Bender, C. M., Pao, M. M., & Jones, P. A. (1998). Inhibition of DNA methylation by 5-aza-2’-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Research, 58(1), 95–101.PubMedGoogle Scholar
  40. 40.
    Mund, C., Hackanson, B., Stresemann, C., Lubbert, M., & Lyko, F. (2005). Characterization of DNA demethylation effects induced by 5-Aza-2’-deoxycytidine in patients with myelodysplastic syndrome. Cancer Research, 65(16), 7086–7090.CrossRefPubMedGoogle Scholar
  41. 41.
    De Smet, C., Lurquin, C., Lethe, B., Martelange, V., & Boon, T. (1999). DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Molecular and Cellular Biology, 19(11), 7327–7335.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Yamashita, S., Tsujino, Y., Moriguchi, K., Tatematsu, M., & Ushijima, T. (2006). Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Science, 97(1), 64–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Otolaryngology-HNSWayne State University School of MedicineLande DetroitUSA

Personalised recommendations