Stem Cell Reviews and Reports

, Volume 10, Issue 5, pp 686–696 | Cite as

Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration

  • Wei Seong TohEmail author
  • Casper Bindzus Foldager
  • Ming Pei
  • James Hoi Po Hui


Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.


Stem cells Mesenchymal stem cells Secretome Extracellular matrix Cartilage Biomaterials Tissue regeneration Tissue engineering 



This work was partially supported by grants (R221000068720 and R221000070733) from National University of Singapore, National University Healthcare System, and Ministry of Education, Singapore.


The authors indicate no potential conflicts of interest.


  1. 1.
    Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432–463.PubMedGoogle Scholar
  2. 2.
    Marcacci, M., Filardo, G., & Kon, E. (2013). Treatment of cartilage lesions: what works and why? Injury, 44(Supplement 1(0)), S11–S15.Google Scholar
  3. 3.
    Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: a disease of the joint as an organ. Arthritis & Rheumatism, 64(6), 1697–1707.Google Scholar
  4. 4.
    Ge, Z., Hu, Y., Heng, B. C., Yang, Z., Ouyang, H., Lee, E. H., et al. (2006). Osteoarthritis and therapy. Arthritis Care & Research, 55(3), 493–500.Google Scholar
  5. 5.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.PubMedGoogle Scholar
  6. 6.
    Jiang, Y. Z., Zhang, S. F., Qi, Y. Y., Wang, L. L., & Ouyang, H. W. (2011). Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplantation, 20(5), 593–607.PubMedGoogle Scholar
  7. 7.
    Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477–484.Google Scholar
  8. 8.
    Revell, C. M., & Athanasiou, K. A. (2008). Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Engineering, Part B: Reviews, 15(1), 1–15.Google Scholar
  9. 9.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedGoogle Scholar
  10. 10.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedGoogle Scholar
  11. 11.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedGoogle Scholar
  12. 12.
    Toh, W. S., Liu, H., Heng, B. C., Rufaihah, A. J., Ye, C. P., & Cao, T. (2005). Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors, 23(4), 313–321.PubMedGoogle Scholar
  13. 13.
    Jones, B. A., & Pei, M. (2012). Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 301–311.Google Scholar
  14. 14.
    Kuroda, R., Usas, A., Kubo, S., Corsi, K., Peng, H., Rose, T., et al. (2006). Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis & Rheumatism, 54(2), 433–442.Google Scholar
  15. 15.
    Nathan, S., De, S. D., Thambyah, A., Fen, C., Goh, J., & Lee, E. H. (2003). Cell-based therapy in the repair of osteochondral defects: a novel Use for adipose tissue. Tissue Engineering, 9(4), 733–744.PubMedGoogle Scholar
  16. 16.
    Huang, G. T.-J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B.-C., & Lee, E. H. (2010). Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. The American Journal of Sports Medicine, 38(6), 1110–1116.PubMedGoogle Scholar
  18. 18.
    Wakitani, S., Okabe, T., Horibe, S., Mitsuoka, T., Saito, M., Koyama, T., et al. (2011). Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 146–150.PubMedGoogle Scholar
  19. 19.
    Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T. M., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. STEM CELLS, 25(2), 425–436.PubMedGoogle Scholar
  20. 20.
    Toh, W. S., Lee, E. H., & Cao, T. (2011). Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews, 7(3), 544–559.PubMedGoogle Scholar
  21. 21.
    Toh, W. S., Yang, Z., Liu, H., Heng, B. C., Lee, E. H., & Cao, T. (2007). Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. STEM CELLS, 25(4), 950–960.PubMedGoogle Scholar
  22. 22.
    Toh, W. S., Lee, E. H., Guo, X.-M., Chan, J. K. Y., Yeow, C. H., Choo, A. B., et al. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31(27), 6968–6980.PubMedGoogle Scholar
  23. 23.
    Ko, J.-Y., Kim, K.-I., Park, S., & Im, G.-I. (2014). In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials, 35(11), 3571–3581.PubMedGoogle Scholar
  24. 24.
    Toh, W. S., Yang, Z., Heng, B. C., & Cao, T. (2007). Differentiation of human embryonic stem cells toward the chondrogenic lineage. Methods in Molecular Biology, 407, 333–349.Google Scholar
  25. 25.
    da Silva, M. L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427.Google Scholar
  26. 26.
    Baraniak, P., & McDevitt, T. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Foldager, C. B., Toh, W. S., Gomoll, A. H., Olsen, B. R., & Spector, M. (2014). Distribution of basement membrane molecules, laminin and collagen type IV, in normal and degenerated cartilage tissues. Cartilage, 5, 123–132.Google Scholar
  28. 28.
    Kvist, A. J., Nyström, A., Hultenby, K., Sasaki, T., Talts, J. F., & Aspberg, A. (2008). The major basement membrane components localize to the chondrocyte pericellular matrix — a cartilage basement membrane equivalent? Matrix Biology, 27(1), 22–33.PubMedGoogle Scholar
  29. 29.
    Toh, W. S., Foldager, C. B., Olsen, B. R., & Spector, M. (2013). Basement membrane molecule expression attendant to chondrogenesis by nucleus pulposus cells and mesenchymal stem cells. Journal of Orthopaedic Research, 31(7), 1136–1143.PubMedGoogle Scholar
  30. 30.
    Koelling, S., Kruegel, J., Irmer, M., Path, J. R., Sadowski, B., Miro, X., et al. (2009). Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell, 4(4), 324–335.PubMedGoogle Scholar
  31. 31.
    Kon, E., Gobbi, A., Filardo, G., Delcogliano, M., Zaffagnini, S., & Marcacci, M. (2009). Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. The American Journal of Sports Medicine, 37(1), 33–41.PubMedGoogle Scholar
  32. 32.
    Scanzello, C. R., & Goldring, S. R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone, 51(2), 249–257.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Boeuf, S., & Richter, W. (2010). Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Research & Therapy, 1(4), 31.Google Scholar
  34. 34.
    Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H. P., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. STEM CELLS, 25(3), 750–760.PubMedGoogle Scholar
  35. 35.
    Afizah, H., Yang, Z., Hui, J. H. P., Ouyang, H.-W., & Lee, E.-H. (2007). A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering, 13(4), 659–666.PubMedGoogle Scholar
  36. 36.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521–2529.Google Scholar
  37. 37.
    Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 17(6), 714–722.PubMedGoogle Scholar
  38. 38.
    Li, J., & Pei, M. (2012). Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 270–287.Google Scholar
  39. 39.
    Chen, X., Song, X.-H., Yin, Z., Zou, X.-H., Wang, L.-L., Hu, H., et al. (2009). Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. STEM CELLS, 27(6), 1276–1287.PubMedGoogle Scholar
  40. 40.
    Jung, Y., Bauer, G., & Nolta, J. A. (2012). Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. STEM CELLS, 30(1), 42–47.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Villa-Diaz, L. G., Brown, S. E., Liu, Y., Ross, A. M., Lahann, J., Parent, J. M., et al. (2012). Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. STEM CELLS, 30(6), 1174–1181.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology, 584, 317–331.Google Scholar
  43. 43.
    Li, J., & Pei, M. (2010). Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 17(5–6), 703–712.PubMedGoogle Scholar
  44. 44.
    Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F., et al. (2007). Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6. Journal of Cellular Physiology, 211(3), 682–691.PubMedGoogle Scholar
  45. 45.
    Handorf, A. M., & Li, W.-J. (2014). Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. Journal of Cellular Physiology, 229(2), 162–171.PubMedGoogle Scholar
  46. 46.
    Handorf, A. M., & Li, W.-J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS ONE, 6(7), e22887.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Boyette, L. B., Creasey, O. A., Guzik, L., Lozito, T., & Tuan, R. S. (2014). Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Translational Medicine, 3(2), 241–254.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Adesida, A., Mulet-Sierra, A., & Jomha, N. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Therapy, 3(2), 9.Google Scholar
  49. 49.
    Munir, S., Foldager, C., Lind, M., Zachar, V., Søballe, K., & Koch, T. (2014). Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell and Tissue Research, 355(1), 89–102.PubMedGoogle Scholar
  50. 50.
    Cui, J. H., Park, S. R., Park, K., Choi, B. H., & B-h, M. (2007). Preconditioning of mesenchymal stem cells with Low-intensity ultrasound for cartilage formation in vivo. Tissue Engineering, 13(2), 351–360.PubMedGoogle Scholar
  51. 51.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMedGoogle Scholar
  52. 52.
    Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in Rat model of myocardial infarction. The Annals of Thoracic Surgery, 80(1), 229–237.PubMedGoogle Scholar
  53. 53.
    Li, Y., Chen, J., Zhang, C. L., Wang, L., Lu, D., Katakowski, M., et al. (2005). Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia, 49(3), 407–417.PubMedGoogle Scholar
  54. 54.
    Lee, K. B. L., Hui, J. H. P., Song, I. C., Ardany, L., & Lee, E. H. (2007). Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. STEM CELLS, 25(11), 2964–2971.PubMedGoogle Scholar
  55. 55.
    Hwang, N. S., Varghese, S., Puleo, C., Zhang, Z., & Elisseeff, J. (2007). Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 212(2), 281–284.PubMedGoogle Scholar
  56. 56.
    Wu, L., Leijten, J. C. H., Georgi, N., Post, J. N., van Blitterswijk, C. A., & Karperien, M. (2011). Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Engineering Part A, 17(9–10), 1425–1436.PubMedGoogle Scholar
  57. 57.
    Wu, L., Prins, H.-J., Helder, M. N., van Blitterswijk, C. A., & Karperien, M. (2012). Trophic effects of mesenchymal stem cells in chondrocyte Co-cultures are independent of culture conditions and cell sources. Tissue Engineering Part A, 18(15–16), 1542–1551.PubMedGoogle Scholar
  58. 58.
    Wang, M., Rahnama, R., Cheng, T., Grotkopp, E., Jacobs, L., Limburg, S., et al. (2013). Trophic stimulation of articular chondrocytes by late-passage mesenchymal stem cells in coculture. Journal of Orthopaedic Research, 31(12), 1936–1942.PubMedGoogle Scholar
  59. 59.
    Lee, C., Burnsed, O., Raghuram, V., Kalisvaart, J., Boyan, B., & Schwartz, Z. (2012). Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Research & Therapy, 3(4), 35.Google Scholar
  60. 60.
    Xu, L., Wang, Q., Xu, F., Ye, Z., Zhou, Y., & Tan, W.-S. (2013). Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration. Stem Cells and Development, 22(11), 1657–1669.PubMedGoogle Scholar
  61. 61.
    Pei, M., Li, J., Zhang, Y., Liu, G., Wei, L., & Zhang, Y. (2014). Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell and Tissue Research, 356(2), 391–403.PubMedGoogle Scholar
  62. 62.
    Jeong, S. Y., Kim, D. H., Ha, J., Jin, H. J., Kwon, S.-J., Chang, J. W., et al. (2013). Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. STEM CELLS, 31(10), 2136–2148.PubMedGoogle Scholar
  63. 63.
    Sze, S. K., de Kleijn, D. P. V., Lai, R. C., Khia Way Tan, E., Zhao, H., Yeo, K. S., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics, 6(10), 1680–1689.Google Scholar
  64. 64.
    Cho, G.-W., Kang, B. Y., Kim, K.-S., & Kim, S. H. (2012). Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells. Neuroscience Letters, 526(2), 100–105.PubMedGoogle Scholar
  65. 65.
    Liu, G.-S., Peshavariya, H. M., Higuchi, M., Chan, E. C., Dusting, G. J., & Jiang, F. (2013). Pharmacological priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. Journal of Tissue Engineering and Regenerative Medicine. doi: 10.1002/term.1796.Google Scholar
  66. 66.
    Lee, M. J., Kim, J., Kim, M. Y., Bae, Y.-S., Ryu, S. H., Lee, T. G., et al. (2010). Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. Journal of Proteome Research, 9(4), 1754–1762.PubMedGoogle Scholar
  67. 67.
    Khan, M., Akhtar, S., Mohsin, S., Khan, N. S., & Riazuddin, S. (2010). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells and Development, 20(1), 67–75.PubMedGoogle Scholar
  68. 68.
    Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences, 107(31), 13724–13729.Google Scholar
  69. 69.
    YlÖstalo, J. H., Bartosh, T. J., Coble, K., & Prockop, D. J. (2012). Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. STEM CELLS, 30(10), 2283–2296.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Bara, J. J., McCarthy, H. E., Humphrey, E., Johnson, W. E. B., & Roberts, S. (2013). Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Engineering Part A, 20(1–2), 147–159.PubMedGoogle Scholar
  71. 71.
    Kubo, S., Cooper, G., Matsumoto, T., Phillippi, J., Corsi, K., Usas, A., et al. (2009). Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis and Rheumatism, 60, 155–165.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Petrie Aronin, C. E., & Tuan, R. S. (2010). Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews, 90(1), 67–74.Google Scholar
  73. 73.
    Tetta, C., Bruno, S., Fonsato, V., Deregibus, M. C., & Camussi, G. (2011). The role of microvesicles in tissue repair. Organogenesis, 7(2), 105–115.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Yeo, R. W. Y., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. J., et al. (2013). Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341.PubMedGoogle Scholar
  75. 75.
    Goldring, M., Tsuchimochi, K., & Ijiri, K. (2006). The control of chondrogenesis. Journal of Cellular Biochemistry, 97, 33–44.PubMedGoogle Scholar
  76. 76.
    Huang, Q., Goh, J. C. H., Hutmacher, D. W., & Lee, E. H. (2002). In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Engineering, 8(3), 469–482.PubMedGoogle Scholar
  77. 77.
    Gaissmaier, C., Koh, J. L., & Weise, K. (2008). Growth and differentiation factors for cartilage healing and repair. Injury, 39(1), 88–96.Google Scholar
  78. 78.
    Schmidt, M. B., Chen, E. H., & Lynch, S. E. (2006). A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and Cartilage, 14(5), 403–412.PubMedGoogle Scholar
  79. 79.
    Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., et al. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713–723.PubMedGoogle Scholar
  80. 80.
    Liu, H., Lu, K., MacAry, P. A., Wong, K. L., Heng, A., Cao, T., et al. (2012). Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. Journal of Cell Science, 125(1), 200–208.PubMedGoogle Scholar
  81. 81.
    Manferdini, C., Maumus, M., Gabusi, E., Piacentini, A., Filardo, G., Peyrafitte, J.-A., et al. (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis & Rheumatism, 65(5), 1271–1281.Google Scholar
  82. 82.
    Patra, D., & Sandell, L. J. (2012). Antiangiogenic and anticancer molecules in cartilage. Expert Reviews in Molecular Medicine, 14, e10.PubMedGoogle Scholar
  83. 83.
    Fu, X., Toh, W. S., Liu, H., Lu, K., Li, M., & Cao, T. (2011). Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Engineering. Part C, Methods, 17(9), 927–937.PubMedGoogle Scholar
  84. 84.
    Peng, Y., Bocker, M. T., Holm, J., Toh, W. S., Hughes, C. S., Kidwai, F., et al. (2012). Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 6(10), e74–e86.PubMedGoogle Scholar
  85. 85.
    Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., et al. (2011). Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. The FASEB Journal, 25(5), 1474–1485.PubMedCentralGoogle Scholar
  86. 86.
    Pei, M., He, F., Li, J., Tidwell, J. E., Jones, A. C., & McDonough, E. B. (2012). Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Engineering Part A, 19(9–10), 1144–1154.Google Scholar
  87. 87.
    He, F., Chen, X., & Pei, M. (2009). Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 15(12), 3809–3821.PubMedGoogle Scholar
  88. 88.
    Pei, M., & He, F. (2012). Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. Journal of Cellular Physiology, 227(5), 2163–2174.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pei, M., Shoukry, M., Li, J., Daffner, S. D., France, J. C., & Emery, S. E. (2012). Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine, 37(18), 1538–1547.PubMedGoogle Scholar
  90. 90.
    He, F. P., & Pei, M. (2012). Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine, 37(6), 459–469.PubMedGoogle Scholar
  91. 91.
    Pei, M., Zhang, Y., Li, J., & Chen, D. (2012). Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells and Development, 22(6), 889–900.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Pei, M., He, F., & Kish, V. L. (2011). Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Engineering Part A, 17(23–24), 3067–3076.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.PubMedGoogle Scholar
  94. 94.
    Chen, C., Loe, F., Blocki, A., Peng, Y., & Raghunath, M. (2011). Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced Drug Delivery Reviews, 63(4–5), 277–290.PubMedGoogle Scholar
  95. 95.
    Lindner, U., Kramer, J., Behrends, J., Driller, B., Wendler, N.-O., Boehrnsen, F., et al. (2010). Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy, 12(8), 992–1005.PubMedGoogle Scholar
  96. 96.
    Helledie, T., Dombrowski, C., Rai, B., Lim, Z. X. H., Hin, I. L. H., Rider, D. A., et al. (2011). Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow. Stem Cells and Development, 21(11), 1897–1910.PubMedCentralGoogle Scholar
  97. 97.
    Li, J., Hansen, K. C., Zhang, Y., Dong, C., Dinu, C. Z., Dzieciatkowska, M., et al. (2014). Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials, 35(2), 642–653.PubMedGoogle Scholar
  98. 98.
    Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C. doi: 10.1016/j.msec.2014.04.026.Google Scholar
  99. 99.
    Seib, F. P., Prewitz, M., Werner, C., & Bornhäuser, M. (2009). Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochemical and Biophysical Research Communications, 389(4), 663–667.PubMedGoogle Scholar
  100. 100.
    Toh, W. S., Spector, M., Lee, E. H., & Cao, T. (2011). Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Molecular Pharmaceutics, 8(4), 994–1001.PubMedGoogle Scholar
  101. 101.
    He, J., Genetos, D. C., & Leach, J. K. (2009). Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-Co-glycolide) composite scaffolds. Tissue Engineering Part A, 16(1), 127–137.PubMedCentralGoogle Scholar
  102. 102.
    Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., & Fujinaga, T. (2006). Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering, 93(6), 1152–1163.PubMedGoogle Scholar
  103. 103.
    Toh, W. S., Guo, X.-M., Choo, A. B., Lu, K., Lee, E. H., & Cao, T. (2009). Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. Journal of Cellular and Molecular Medicine, 13(9b), 3570–3590.PubMedGoogle Scholar
  104. 104.
    Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835–3845.PubMedGoogle Scholar
  105. 105.
    Wu, S.-C., Chang, J.-K., Wang, C.-K., Wang, G.-J., & Ho, M.-L. (2010). Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials, 31(4), 631–640.PubMedGoogle Scholar
  106. 106.
    Jose, S., Hughbanks, M. L., Binder, B. Y. K., Ingavle, G. C., & Leach, J. K. (2014). Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels. Acta Biomaterialia, 10(5), 1955–1964.PubMedGoogle Scholar
  107. 107.
    Silva, N. A., Moreira, J., Ribeiro-Samy, S., Gomes, E. D., Tam, R. Y., Shoichet, M. S., et al. (2013). Modulation of bone marrow mesenchymal stem cell secretome by ECM-like hydrogels. Biochimie, 95(12), 2314–2319.PubMedGoogle Scholar
  108. 108.
    Schwarz, S., Koerber, L., Elsaesser, A. F., Goldberg-Bockhorn, E., Seitz, A. M., Dürselen, L., et al. (2012). Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Engineering Part A, 18(21–22), 2195–2209.PubMedGoogle Scholar
  109. 109.
    Lu, Q., Li, M., Zou, Y., & Cao, T. (2014). Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. Journal of Controlled Release, 174, 43–50.PubMedGoogle Scholar
  110. 110.
    Cheung, H. K., Han, T. T. Y., Marecak, D. M., Watkins, J. F., Amsden, B. G., & Flynn, L. E. (2014). Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials, 35(6), 1914–1923.PubMedGoogle Scholar
  111. 111.
    Sawkins, M. J., Bowen, W., Dhadda, P., Markides, H., Sidney, L. E., Taylor, A. J., et al. (2013). Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomaterialia, 9(8), 7865–7873.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Adam Young, D., Bajaj, V., & Christman, K. L. (2014). Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. Journal of Biomedical Materials Research, Part A, 102(6), 1641–1651.Google Scholar
  113. 113.
    Li, W.-J., Tuli, R., Huang, X., Laquerriere, P., & Tuan, R. S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26(25), 5158–5166.PubMedGoogle Scholar
  114. 114.
    Garrigues, N. W., Little, D., Sanchez-Adams, J., Ruch, D. S., & Guilak, F. (2014). Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research, Part A. doi: 10.1002/jbm.a.35068.Google Scholar
  115. 115.
    Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143(2), 175–182.PubMedGoogle Scholar
  116. 116.
    Lim, T. C., Rokkappanavar, S., Toh, W. S., Wang, L.-S., Kurisawa, M., & Spector, M. (2013). Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. The FASEB Journal, 27(3), 1023–1033.Google Scholar
  117. 117.
    Diao, H. J., Yeung, C. W., Yan, C. H., Chan, G. C. F., & Chan, B. P. (2013). Bidirectional and mutually beneficial interactions between human mesenchymal stem cells and osteoarthritic chondrocytes in micromass co-cultures. Regenerative Medicine, 8(3), 257–269.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wei Seong Toh
    • 1
    • 2
    Email author
  • Casper Bindzus Foldager
    • 3
  • Ming Pei
    • 4
  • James Hoi Po Hui
    • 2
    • 5
  1. 1.Faculty of DentistryNational University of SingaporeSingaporeSingapore
  2. 2.Tissue Engineering Program, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  3. 3.Orthopaedic Research LaboratoryAarhus University HospitalAarhus CDenmark
  4. 4.Stem Cell and Tissue Engineering Laboratory, Department of OrthopaedicsWest Virginia UniversityMorgantownUSA
  5. 5.Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic SurgeryNational University Health System, National University of SingaporeSingaporeSingapore

Personalised recommendations