Advertisement

Stem Cell Reviews and Reports

, Volume 10, Issue 5, pp 712–724 | Cite as

Isolation and in Vitro Characterization of Bovine Amniotic Fluid Derived Stem Cells at Different Trimesters of Pregnancy

  • B. RossiEmail author
  • B. Merlo
  • S. Colleoni
  • E. Iacono
  • P. L. Tazzari
  • F. Ricci
  • G. Lazzari
  • C. Galli
Article

Abstract

Amniotic fluid (AF) is a source of multipotent mesenchymal stem cells (MSCs), very promising cells for tissue engineering in clinical application. The aim of this work was to isolate and characterize cells isolated from bovine AF as alternative sources of primitive multipotent stem cells in a species that could be a large-animal model for biomedical and biotechnology researches. Samples were recovered, at slaughterhouse, from 39 pregnant cows at different trimesters of pregnancy and cells were cultured in vitro. At passages (P) 3 and 7 differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced. Flow cytometry analysis for CD90, CD105, CD73, CD44, CD34, CD45 and CD14 was performed, immunocytochemistry (ICC) for Oct4, SSEA4, α-SMA, Vimentin, N- and E- Cadherin and CK and qPCR analysis for OCT4, NANOG and SOX2 were carried out. The cell yield was significantly higher in the first trimester compared to the second and the third one (P < 0.05). Cells were isolated from 25/39 samples and cell population appeared heterogeneous. Two main cell types were identified in samples from all trimesters: round- (RS) and spindle-shaped (SS) cells. 17/25 samples showed both populations (mixed, MX). Both cell types showed MSC-markers and differentiation capability with some variability related to the passages. The SS-population also expressed low levels of stemness markers such as NANOG and SSEA4 but not OCT4. Bovine AF shows a heterogeneous cell population containing also MSCs, multipotent cells that represent an intermediate stage between embryonic stem cells and adult ones.

Keywords

Amniotic fluid Bovine Mesenchymal stem cells Differentiation Pluripotency 

Notes

Acknowledgements

This research was funded by grant PRIN 2009 from MIUR and EPIHEALTH, EU FP7 n°278418.

The authors wish to thanks Professor Giuseppe Sarli (Pathological Anatomy Service, DIMEVET) for Vimentin clone 9 (DAKO M0725) antibody, and Professor Alessandra Scagliarini (Public Health and Animal pathology, DIMEVET) for positive controls for immunostaining analysis on CK protein. Thanks are also due to Dott. Chiara Sartori for the help given with first molecular analyses and to the students Valentina Montanari and Maria Chiara Corlianò for the help given during the culture and the differentiation of the samples.

Disclosures

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Underwood, M. A., Gilbert, W. M., & Sherman, M. P. (2005). Amniotic fluid: not just fetal urine anymore. Journal of Perinatology: Official Journal of the California Perinatal Association, 25(5), 341–348.CrossRefGoogle Scholar
  2. 2.
    Roubelakis, M. G., Trohatou, O., & Anagnou, N. P. (2012). Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells International, 2012, 107836.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Klemmt, P. A. B., Vafaizadeh, V., & Groner, B. (2011). The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opinion on Biological Therapy, 11(10), 1297–1314.PubMedCrossRefGoogle Scholar
  4. 4.
    Roubelakis, M. G., Bitsika, V., Zagoura, D., et al. (2011). In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. Journal of Cellular and Molecular Medicine, 15(9), 1896–1913.PubMedCrossRefGoogle Scholar
  5. 5.
    Fauza, D. (2004). Amniotic fluid and placental stem cells. Best practice & research. Clinical Obstetrics and Gynaecology, 18(6), 877–891.PubMedGoogle Scholar
  6. 6.
    Antonucci, I., Stuppia, L., Kaneko, Y., et al. (2011). Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplantation, 20(6), 789–795.PubMedCrossRefGoogle Scholar
  7. 7.
    Pozzobon, M., Piccoli, M., & De Coppi, P. (2014). Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking. doi: 10.1007/s10561-014-9428-y.PubMedGoogle Scholar
  8. 8.
    Kim, J., Lee, Y., Kim, H., et al. (2007). Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 40(1), 75–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Kunisaki, S. M., Armant, M., Kao, G. S., Stevenson, K., Kim, H., & Fauza, D. O. (2007). Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. Journal of Pediatric Surgery, 42(6), 974–980.PubMedCrossRefGoogle Scholar
  10. 10.
    You, Q., Cai, L., Zheng, J., Tong, X., Zhang, D., & Zhang, Y. (2008). Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 103(2), 149–152.CrossRefGoogle Scholar
  11. 11.
    Davydova, D. A., Vorotelyak, E. A., Smirnova, Y. A., et al. (2009). Cell phenotypes in human amniotic fluid. Acta Naturae, 1(2), 98–103.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bossolasco, P., Montemurro, T., Cova, L., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 16(4), 329–336.PubMedCrossRefGoogle Scholar
  13. 13.
    Bottai, D., Cigognini, D., Nicora, E., et al. (2012). Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restorative Neurology and Neuroscience, 30(1), 55–68.PubMedGoogle Scholar
  14. 14.
    Zia, S., Toelen, J., Mori da Cunha, M., Dekoninck, P., De Coppi, P., & Deprest, J. (2013). Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenatal Diagnosis, 33(10), 921–928.PubMedGoogle Scholar
  15. 15.
    Roubelakis, M. G., Pappa, K. I., Bitsika, V., et al. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16(6), 931–952.PubMedCrossRefGoogle Scholar
  16. 16.
    Iacono, E., Brunori, L., Pirrone, A., et al. (2012). Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction, 143(4), 455–468.PubMedCrossRefGoogle Scholar
  17. 17.
    Lovati, A. B., Corradetti, B., Lange Consiglio, A., et al. (2011). Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary Research Communications, 35(2), 103–121.PubMedCrossRefGoogle Scholar
  18. 18.
    Dev, K., Giri, S. K., Kumar, A., Yadav, A., Singh, B., & Gautam, S. K. (2012). Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reproduction in Domestic Animals, 47(5), 704–711.PubMedCrossRefGoogle Scholar
  19. 19.
    Sartore, S., Lenzi, M., Angelini, A., et al. (2005). Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery, 28(5), 677–684.CrossRefGoogle Scholar
  20. 20.
    Chen, J., Lu, Z., Cheng, D., Peng, S., & Wang, H. (2011). Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PloS One, 6(5), e19964.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kaviani, A., Perry, T. E., Dzakovic, A., Jennings, R. W., Ziegler, M. M., & Fauza, D. O. (2001). The amniotic fluid as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery, 36(11), 1662–1665.PubMedCrossRefGoogle Scholar
  22. 22.
    Mauro, A., Turriani, M., Ioannoni, A., et al. (2010). Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Veterinary Research Communications, 34(Suppl 1), S25–S28.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi, S. A., Choi, H. S., Kim, K. J., et al. (2013). Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. In vitro cellular & developmental biology. Animal, 49(1), 42–51.Google Scholar
  24. 24.
    Filioli Uranio, M., Valentini, L., Lange-Consiglio, A., et al. (2011). Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Molecular Reproduction and Development, 78(5), 361–373.PubMedCrossRefGoogle Scholar
  25. 25.
    Iacono, E., Cunto, M., Zambelli, D., Ricci, F., Tazzari, P. L., & Merlo, B. (2012). Could fetal fluid and membranes be an alternative source for mesenchymal stem cells (MSCs) in the feline species? A preliminary study. Veterinary Research Communications, 36(2), 107–118.PubMedCrossRefGoogle Scholar
  26. 26.
    Corradetti, B., Meucci, A., Bizzaro, D., Cremonesi, F., & Lange Consiglio, A. (2013). Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction, 145(4), 391–400.PubMedCrossRefGoogle Scholar
  27. 27.
    Gao, Y., Zhu, Z., Zhao, Y., Hua, J., Ma, Y., & Guan, W. (2014). Multilineage potential research of bovine amniotic fluid mesenchymal stem cells. International Journal of Molecular Sciences, 15(3), 3698–3710.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.PubMedCrossRefGoogle Scholar
  29. 29.
    Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18(7), 1489–1493.PubMedCrossRefGoogle Scholar
  30. 30.
    Prusa, A. R., & Hengstschlager, M. (2002). Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 8(11), RA253–RA257.Google Scholar
  31. 31.
    Da Sacco, S., Sedrakyan, S., Boldrin, F., et al. (2010). Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. The Journal of Urology, 183(3), 1193–1200.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Burk, J., Ribitsch, I., Gittel, C., et al. (2013). Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Veterinary Journal, 195(1), 98–106.CrossRefGoogle Scholar
  33. 33.
    Kavanagh, D. P. J., Robinson, J., & Kalia, N. (2014). Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem Cell Reviews. doi: 10.1007/s12015-014-9510-7.PubMedGoogle Scholar
  34. 34.
    Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regenerative Medicine, 4(3), 423–433.PubMedCrossRefGoogle Scholar
  35. 35.
    Cremonesi, F., Corradetti, B., & Lange Consiglio, A. (2011). Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology, 75(8), 1400–1415.PubMedCrossRefGoogle Scholar
  36. 36.
    Yi, T., & Song, S. U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Archives of Pharmacal Research, 35(2), 213–221.PubMedCrossRefGoogle Scholar
  37. 37.
    Ashwood, E. R., Knight, G. J., & Burtis, C. A. (2006). Chapter 54: clinical chemistry of pregnancy. In E. R. Ashwood & D. E. Bruns (Eds.), Teitz textbook of clinical chemistry and molecular diagnostics (4th ed., pp. 2153–2206). St. Louis: Elsevier Saunders.Google Scholar
  38. 38.
    Noden, D. M., & De Lahunta, A. (1985). The embryology of domestic animals: developmental mechanisms and malformations. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  39. 39.
    Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery, 36(7), 613–622.PubMedCrossRefGoogle Scholar
  40. 40.
    Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333.PubMedCrossRefGoogle Scholar
  41. 41.
    Mizuno, H., & Hyakusoku, H. (2003). Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. Journal of Nippon Medical School, 70(4), 300–306.PubMedCrossRefGoogle Scholar
  42. 42.
    Thélie, A., Papillier, P., Pennetier, S., et al. (2007). Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Developmental Biology, 7, 125.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pant, D., & Keefer, C. L. (2009). Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning and Stem Cells, 11(3), 355–365.PubMedCrossRefGoogle Scholar
  44. 44.
    Sutradhar, B. C., Hong, G., Ge, Z., & Kim, G. (2012). Enhancement of chondrogenesis via co-culture of bovine chondrocytes with Demineralized bone matrix in chitosan-alginate beads. Journal of Medical and Biological Engineering, 33(5), 518–525.CrossRefGoogle Scholar
  45. 45.
    Brace, R. A., & Wolf, E. J. (1989). Normal amniotic fluid volume changes throughout pregnancy. American Journal of Obstetrics and Gynecology, 161(2), 382–388.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaviani, A., Guleserian, K., Perry, T. E., Jennings, R. W., Ziegler, M. M., & Fauza, D. O. (2003). Fetal tissue engineering from amniotic fluid. Journal of the American College of Surgeons, 196(4), 592–597.PubMedCrossRefGoogle Scholar
  47. 47.
    Perin, L., Sedrakyan, S., Da Sacco, S., & De Filippo, R. (2008). Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods in Cell Biology, 86, 85–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Civin, C. L., Trischmann, T. M., Fackler, M. J., et al. (1989). Summary of CD34 cluster workshop section. In W. Knapp et al. (Eds.), Leucocyte Typing IV - white cell differentiation antigens (pp. 818–825). Oxford: Oxford University Press.Google Scholar
  49. 49.
    Siegel, N., Rosner, M., Hanneder, M., Freilinger, A., & Hengstschläger, M. (2008). Human amniotic fluid stem cells: a new perspective. Amino Acids, 35(2), 291–293.PubMedCrossRefGoogle Scholar
  50. 50.
    Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19(6), 1450–1456.PubMedCrossRefGoogle Scholar
  51. 51.
    You, Q., Tong, X., Guan, Y., et al. (2009). The biological characteristics of human third trimester amniotic fluid stem cells. The Journal of International Medical Research, 37(1), 105–112.PubMedCrossRefGoogle Scholar
  52. 52.
    Zagoura, D. S., Trohatou, O., Bitsika, V., et al. (2013). AF-MSCs fate can be regulated by culture conditions. Cell Death & Disease, 4, e571. doi: 10.1038/cddis.2013.93.CrossRefGoogle Scholar
  53. 53.
    Eastham, A. M., Spencer, H., Soncin, F., Ritson, S., Merry, C. L. R., Stern, P. L., & Ward, C. M. (2007). Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Research, 67(23), 11254–11262.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • B. Rossi
    • 1
    Email author
  • B. Merlo
    • 1
  • S. Colleoni
    • 3
  • E. Iacono
    • 1
  • P. L. Tazzari
    • 2
  • F. Ricci
    • 2
  • G. Lazzari
    • 3
  • C. Galli
    • 1
    • 3
  1. 1.Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
  2. 2.Immunohaematology and Transfusion MedicineS.Orsola-Malpighi HospitalBolognaItaly
  3. 3.Avantea, Laboratory of Reproductive TechnologiesCremonaItaly

Personalised recommendations