Skip to main content

Advertisement

Log in

The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The neural cell adhesion molecule (NCAM) plays a role in neurite outgrowth, synaptogenesis, and neuronal differentiation. The NCAM mimetic peptide FG Loop (FGL) promotes neuronal survival in vitro and enhances spatial learning and memory in rats. We here investigated the effects of FGL on neural stem cells (NSC) in vitro and in vivo. In vitro, cell proliferation of primary NSC was assessed after exposure to various concentrations of NCAM or FGL. The differentiation potential of NCAM- or FGL-treated cells was assessed immunocytochemically. To investigate its influence on endogenous NSC in vivo, FGL was injected subcutaneously into adult rats. The effects on NSC mobilization were studied both via non-invasive positron emission tomography (PET) imaging using the tracer [18F]-fluoro-l-thymidine ([18F]FLT), as well as with immunohistochemistry. Only FGL significantly enhanced NSC proliferation in vitro, with a maximal effect at 10 μg/ml. During differentiation, NCAM promoted neurogenesis, while FGL induced an oligodendroglial phenotype; astrocytic differentiation was neither affected by NCAM or FGL. Those differential effects of NCAM and FGL on differentiation were mediated through different receptors. After FGL-injection in vivo, proliferative activity of NSC in the subventricular zone (SVZ) was increased (compared to placebo-treated animals). Moreover, non-invasive imaging of cell proliferation using [18F]FLT-PET supported an FGL-induced mobilization of NSC from both the SVZ and the hippocampus. We conclude that FGL robustly induces NSC mobilization in vitro and in vivo, and supports oligodendroglial differentiation. This capacity renders FGL a promising agent to facilitate remyelinization, which may eventually make FGL a drug candidate for demyelinating neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ronn, L. C., Hartz, B. P., & Bock, E. (1998). The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Experimental Gerontology, 33(7–8), 853–64.

    Article  CAS  PubMed  Google Scholar 

  2. Kiselyov, V. V., Skladchikova, G., Hinsby, A. M., et al. (2003). Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure, 11(6), 691–701.

    Article  CAS  PubMed  Google Scholar 

  3. Amoureux, M. C., Cunningham, B. A., Edelman, G. M., & Crossin, K. L. (2000). N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype. The Journal of Neuroscience, 20(10), 3631–40.

    CAS  PubMed  Google Scholar 

  4. Neiiendam, J. L., Kohler, L. B., Christensen, C., et al. (2004). An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. Journal of Neurochemistry, 91(4), 920–35.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y., Li, S., Berezin, V., & Bock, E. (2010). The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently. Journal of Neuroscience Research, 88(9), 1882–9.

    CAS  PubMed  Google Scholar 

  6. Ojo, B., Gabbott, P. L., Rezaie, P., et al. (2012). An NCAM Mimetic, FGL, Alters Hippocampal Cellular Morphometry in Young Adult (4 Month-Old) Rats. Neurochem Res

  7. Berezin, V., & Bock, E. (2004). NCAM mimetic peptides: Pharmacological and therapeutic potential. Journal of Molecular Neuroscience, 22(1–2), 33–9.

    Article  PubMed  Google Scholar 

  8. Cambon, K., Hansen, S. M., Venero, C., et al. (2004). A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. The Journal of Neuroscience, 24(17), 4197–204.

    Article  CAS  PubMed  Google Scholar 

  9. Knafo, S., Venero, C., Sanchez-Puelles, C., et al. (2012). Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biology, 10(2), e1001262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Aonurm-Helm, A., Jurgenson, M., Zharkovsky, T., et al. (2008). Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL. European Journal of Neuroscience, 28(8), 1618–28.

    Article  PubMed  Google Scholar 

  11. Skibo, G. G., Lushnikova, I. V., Voronin, K. Y., et al. (2005). A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. European Journal of Neuroscience, 22(7), 1589–96.

    Article  PubMed  Google Scholar 

  12. Schroeter, M., Zickler, P., Denhardt, D. T., Hartung, H. P., & Jander, S. (2006). Increased thalamic neurodegeneration following ischaemic cortical stroke in osteopontin-deficient mice. Brain : a journal of neurology, 129(Pt 6), 1426–37.

    Article  Google Scholar 

  13. Overman, J. J., Clarkson, A. N., Wanner, I. B., et al. (2012). A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proceedings of the National Academy of Sciences of the United States of America, 109(33), E2230–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Perrin, R. J., Fagan, A. M., & Holtzman, D. M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature, 461(7266), 916–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Androutsellis-Theotokis, A., Rueger, M. A., Park, D. M., et al. (2009). Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13570–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rueger, M. A., Androutsellis-Theotokis, A. (2013). Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches. Current pharmaceutical design, in press.

  17. Curtis, M. A., Penney, E. B., Pearson, A. G., et al. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 9023–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Jin, K., Peel, A. L., Mao, X. O., et al. (2004). Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 343–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu, J., Solway, K., Messing, R. O., & Sharp, F. R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. The Journal of Neuroscience, 18(19), 7768–78.

    CAS  PubMed  Google Scholar 

  20. Kittappa, R., Bornstein, S. R., & Androutsellis-Theotokis, A. (2012). The role of eNSCs in neurodegenerative disease. Molecular Neurobiology, 46(3), 555–62.

    Article  CAS  PubMed  Google Scholar 

  21. Martens, D. J., Seaberg, R. M., & van der Kooy, D. (2002). In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. European Journal of Neuroscience, 16(6), 1045–57.

    Article  PubMed  Google Scholar 

  22. Nakatomi, H., Kuriu, T., Okabe, S., et al. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 110(4), 429–41.

    Article  CAS  PubMed  Google Scholar 

  23. Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., et al. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442(7104), 823–6.

    Article  CAS  PubMed  Google Scholar 

  24. Maric, D., Fiorio Pla, A., Chang, Y. H., & Barker, J. L. (2007). Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. The Journal of Neuroscience, 27(8), 1836–52.

    Article  CAS  PubMed  Google Scholar 

  25. Ma, D. K., Ponnusamy, K., Song, M. R., Ming, G. L., & Song, H. (2009). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Molecular Brain, 2, 16.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rueger, M. A., Backes, H., Walberer, M., et al. (2010). Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. The Journal of Neuroscience, 30(18), 6454–60.

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs, A. H., Rueger, M. A., Winkeler, A., et al. (2007). Imaging-guided gene therapy of experimental gliomas. Cancer Research, 67(4), 1706–15.

    Article  CAS  PubMed  Google Scholar 

  28. Schroeter, M., Dennin, M. A., Walberer, M., et al. (2009). Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18 F]FDG-PET study. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 29(6), 1216–25.

    Article  CAS  Google Scholar 

  29. Swanson, L. W. 2003 Brain maps: Structure of the Rat Brain. Elsevier.

  30. Freed, C. R., Greene, P. E., Breeze, R. E., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. The New England Journal of Medicine, 344(10), 710–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lindvall, O., & Hagell, P. (2001). Cell therapy and transplantation in Parkinson’s disease Clinical chemistry and laboratory medicine. CCLM/FESCC, 39(4), 356–61.

    CAS  Google Scholar 

  32. Fukuda, H., Takahashi, J., Watanabe, K., et al. (2006). Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem cells (Dayton, Ohio), 24(3), 763–71.

    Article  CAS  Google Scholar 

  33. Lindvall, O., & Kokaia, Z. (2011). Stem cell research in stroke: how far from the clinic? Stroke, 42(8), 2369–75.

    Article  PubMed  Google Scholar 

  34. Amemori, T., Romanyuk, N., Jendelova, P., et al. (2013). Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem cell research and therapy, 4(3), 68.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Chopp, M., Li, Y., & Zhang, Z. G. (2009). Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke, 40(3 Suppl), S143–5.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Secher, T., Novitskaia, V., Berezin, V., Bock, E., Glenthoj, B., & Klementiev, B. (2006). A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention. Neuroscience, 141(3), 1289–99.

    Article  CAS  PubMed  Google Scholar 

  37. Popov, V. I., Medvedev, N. I., Kraev, I. V., et al. (2008). A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study. European Journal of Neuroscience, 27(2), 301–14.

    Article  PubMed  Google Scholar 

  38. Mistry, S. K., Keefer, E. W., Cunningham, B. A., Edelman, G. M., & Crossin, K. L. (2002). Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1621–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Christensen, C., Lauridsen, J. B., Berezin, V., Bock, E., & Kiselyov, V. V. (2006). The neural cell adhesion molecule binds to fibroblast growth factor receptor 2. FEBS Letters, 580(14), 3386–90.

    Article  CAS  PubMed  Google Scholar 

  40. Kraev, I., Henneberger, C., Rossetti, C., et al. (2011). A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus. PLoS ONE, 6(8), e23433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rueger, M. A., Muesken, S., Walberer, M., et al. (2012). Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience, 215, 174–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work has been supported by the European Community’s Seventh Framework Programme, project number 2,780,006, “NeuroFGL”. We thankfully acknowledge further support by Köln Fortune Program/Faculty of Medicine, University of Cologne, Germany, to SB (253/2012).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Adele Rueger.

Additional information

The two first authors (Rebecca Klein and Stefan Blaschke) contributed equally to this work, thus they share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, R., Blaschke, S., Neumaier, B. et al. The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo. Stem Cell Rev and Rep 10, 539–547 (2014). https://doi.org/10.1007/s12015-014-9512-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9512-5

Keywords

Navigation