Stem Cell Reviews and Reports

, Volume 10, Issue 3, pp 351–375 | Cite as

Interferon-Gamma Modification of Mesenchymal Stem Cells: Implications of Autologous and Allogeneic Mesenchymal Stem Cell Therapy in Allotransplantation

  • Kisha Nandini Sivanathan
  • Stan Gronthos
  • Darling Rojas-Canales
  • Benjamin Thierry
  • P. Toby Coates
Article

Abstract

Bone marrow-derived mesenchymal stem cells (MSC) have unique immunomodulatory and reparative properties beneficial for allotransplantation cellular therapy. The clinical administration of autologous or allogeneic MSC with immunosuppressive drugs is able to prevent and treat allograft rejection in kidney transplant recipients, thus supporting the immunomodulatory role of MSC. Interferon-gamma (IFN-γ) is known to enhance the immunosuppressive properties of MSC. IFN-γ preactivated MSC (MSC-γ) directly or indirectly modulates T cell responses by enhancing or inducing MSC inhibitory factors. These factors are known to downregulate T cell activation, enhance T cell negative signalling, alter T cells from a proinflammatory to an anti-inflammatory phenotype, interact with antigen-presenting cells and increase or induce regulatory cells. Highly immunosuppressive MSC-γ with increased migratory and reparative capacities may aid tissue repair, prolong allograft survival and induce allotransplant tolerance in experimental models. Nevertheless, there are contradictory in vivo observations related to allogeneic MSC-γ therapy. Many studies report that allogeneic MSC are immunogenic due to their inherent expression of major histocompatibility (MHC) molecules. Enhanced expression of MHC in allogeneic MSC-γ may increase their immunogenicity and this can negatively impact allograft survival. Therefore, strategies to reduce MSC-γ immunogenicity would facilitate “off-the-shelf” MSC therapy to efficiently inhibit alloimmune rejection and promote tissue repair in allotransplantation. In this review, we examine the potential benefits of MSC therapy in the context of allotransplantation. We also discuss the use of autologous and allogeneic MSC and the issues associated with their immunogenicity in vivo, with particular focus on the use of enhanced MSC-γ cellular therapy.

Keywords

Mesenchymal stem cells Autologous Allogeneic Interferon-gamma Preactivation Modification T cells Immunosuppression Immunogenicity Allotransplantation Allograft rejection Cellular therapy Monotherapy Immunosuppressive drugs Regeneration Clinical trials 

References

  1. 1.
    Rocha, P. N., Plumb, T. J., Crowley, S. D., & Coffman, T. M. (2003). Effector mechanisms in transplant rejection. Immunology Reviews, 196, 51–64.Google Scholar
  2. 2.
    Mellman, I., & Steinman, R. M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell, 106(3), 255–258.PubMedGoogle Scholar
  3. 3.
    Sozzani, S., Allavena, P., Vecchi, A., & Mantovani, A. (1999). The role of chemokines in the regulation of dendritic cell trafficking. Journal of Leukocyte Biology, 66(1), 1–9.PubMedGoogle Scholar
  4. 4.
    Mempel, T. R., Henrickson, S. E., & Von Andrian, U. H. (2004). T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature, 427(6970), 154–159.PubMedGoogle Scholar
  5. 5.
    Game, D. S., & Lechler, R. I. (2002). Pathways of allorecognition: implications for transplantation tolerance. Transplant Immunology, 10(2–3), 101–108.PubMedGoogle Scholar
  6. 6.
    Sayegh, M. H., & Turka, L. A. (1998). The role of T-cell costimulatory activation pathways in transplant rejection. The New England Journal of Medicine, 338(25), 1813–1821.PubMedGoogle Scholar
  7. 7.
    Afzali, B., Lombardi, G., & Lechler, R. I. (2008). Pathways of major histocompatibility complex allorecognition. Current Opinion in Organ Transplantation, 13(4), 438–444.PubMedGoogle Scholar
  8. 8.
    Montecalvo, A., Shufesky, W. J., Stolz, D. B., et al. (2008). Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. Journal of Immunology, 180(5), 3081–3090.Google Scholar
  9. 9.
    Rothstein, D. M., & Sayegh, M. H. (2003). T-cell costimulatory pathways in allograft rejection and tolerance. Immunological Reviews, 196, 85–108.PubMedGoogle Scholar
  10. 10.
    Li, X. C., Rothstein, D. M., & Sayegh, M. H. (2009). Costimulatory pathways in transplantation: challenges and new developments. Immunological Reviews, 229(1), 271–293.PubMedGoogle Scholar
  11. 11.
    Divate, S. A. (2000). Acute renal allograft rejection: progress in understanding cellular and molecular mechanisms. Journal of Postgraduate Medicine, 46(4), 293–296.PubMedGoogle Scholar
  12. 12.
    Schwartz, R. H. (1996). Models of T cell anergy: is there a common molecular mechanism? The Journal of Experimental Medicine, 184(1), 1–8.PubMedGoogle Scholar
  13. 13.
    Wood, K. J., & Goto, R. (2012). Mechanisms of rejection: current perspectives. Transplantation, 93(1), 1–10.PubMedGoogle Scholar
  14. 14.
    Tarlinton, D. M., Batista, F., & Smith, K. G. (2008). The B-cell response to protein antigens in immunity and transplantation. Transplantation, 85(12), 1698–1704.PubMedGoogle Scholar
  15. 15.
    Win, T. S., & Pettigrew, G. J. (2010). Humoral autoimmunity and transplant vasculopathy: when allo is not enough. Transplantation, 90(2), 113–120.PubMedGoogle Scholar
  16. 16.
    van Leeuwen, M. T., Webster, A. C., McCredie, M. R., et al. (2010). Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study. British Medical Journal, 340, c570.PubMedCentralPubMedGoogle Scholar
  17. 17.
    de Mattos, A. M., Olyaei, A. J., & Bennett, W. M. (2000). Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. American Journal of Kidney Disease, 35(2), 333–346.Google Scholar
  18. 18.
    Stucker, F., & Ackermann, D. (2011). Immunosuppressive drugs—how they work, their side effects and interactions. Therapeutische Umschau, 68(12), 679–686.PubMedGoogle Scholar
  19. 19.
    Vaes, B., Van’t Hof, W., Deans, R., & Pinxteren, J. (2012). Application of multiStem((R)) allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Frontiers in Immunology, 3, 345.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Raicevic, G., Najar, M., Stamatopoulos, B., et al. (2011). The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunology, 270(2), 207–216.Google Scholar
  21. 21.
    Kronsteiner, B., Wolbank, S., Peterbauer, A., et al. (2011). Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells and Development, 20(12), 2115–2126.PubMedGoogle Scholar
  22. 22.
    Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One, 5(2), e9016.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hematti, P. (2008). Role of mesenchymal stromal cells in solid organ transplantation. Transplantation Reviews, 22(4), 262–273.PubMedCentralPubMedGoogle Scholar
  24. 24.
    El Haddad, N., Heathcote, D., Moore, R., et al. (2011). Mesenchymal stem cells express serine protease inhibitor to evade the host immune response. Blood, 117(4), 1176–1183.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ries, C., Egea, V., Karow, M., et al. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood, 109(9), 4055–4063.PubMedGoogle Scholar
  26. 26.
    Wynn, R. F., Hart, C. A., Corradi-Perini, C., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104(9), 2643–2645.PubMedGoogle Scholar
  27. 27.
    Zou, Z., Zhang, Y., Hao, L., et al. (2010). More insight into mesenchymal stem cells and their effects inside the body. Expert Opinion on Biological Therapy, 10(2), 215–230.PubMedGoogle Scholar
  28. 28.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.PubMedGoogle Scholar
  29. 29.
    Togel, F., Hu, Z., Weiss, K., et al. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. American Journal of Physiology - Renal Physiology, 289(1), F31–F42.PubMedGoogle Scholar
  30. 30.
    Psaltis, P. J., Paton, S., See, F., et al. (2010). Enrichment for STRO‐1 expression enhances the cardiovascular paracrine activity of human bone marrow‐derived mesenchymal cell populations. Journal of Cellular Physiology, 223(2), 530–540.PubMedGoogle Scholar
  31. 31.
    Herrera, M. B., Bussolati, B., Bruno, S., et al. (2004). Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. International Journal of Molecular Medicine, 14(6), 1035–1041.PubMedGoogle Scholar
  32. 32.
    Li, X., Yu, X., Lin, Q., et al. (2007). Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. Journal of Molecular and Cellular Cardiology, 42(2), 295–303.PubMedGoogle Scholar
  33. 33.
    Xie, H., Wang, Y., Zhang, H., et al. (2013). Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells. PLoS One, 8(9), e76056.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Xu, Y. Q., & Liu, Z. C. (2008). Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Reviews, 4(2), 101–112.PubMedGoogle Scholar
  35. 35.
    Tsai, P. J., Wang, H. S., Lin, C. H., et al. (2013). Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats. Endocrine Research. doi:10.3109/07435800.2013.797432.PubMedGoogle Scholar
  36. 36.
    Moghadasali, R., Mutsaers, H. A., Azarnia, M., et al. (2013). Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity. Experimental and Toxicologic Pathology, 65(5), 595–600.PubMedGoogle Scholar
  37. 37.
    Selmani, Z., Naji, A., Zidi, I., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 26(1), 212–222.PubMedGoogle Scholar
  38. 38.
    Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76(8), 1208–1213.PubMedGoogle Scholar
  39. 39.
    Augello, A., Tasso, R., Negrini, S. M., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35(5), 1482–1490.PubMedGoogle Scholar
  40. 40.
    Ramasamy, R., Fazekasova, H., Lam, E. W., et al. (2007). Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83(1), 71–76.PubMedGoogle Scholar
  41. 41.
    Jung, Y. J., Ju, S. Y., Yoo, E. S., et al. (2007). MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy, 9(5), 451–458.PubMedGoogle Scholar
  42. 42.
    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.PubMedGoogle Scholar
  43. 43.
    Kebriaei, P., Isola, L., Bahceci, E., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 15(7), 804–811.PubMedGoogle Scholar
  44. 44.
    Wise, A. F., & Ricardo, S. D. (2012). Mesenchymal stem cells in kidney inflammation and repair. Nephrology, 17(1), 1–10.PubMedGoogle Scholar
  45. 45.
    Longoni, B., Szilagyi, E., Quaranta, P., et al. (2010). Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technology and Therapeutics, 12(6), 435–446.PubMedGoogle Scholar
  46. 46.
    Tan, J., Wu, W., Xu, X., et al. (2012). Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. Journal of American Medical Association, 307(11), 1169–1177.Google Scholar
  47. 47.
    Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30(1), 42–48.PubMedGoogle Scholar
  48. 48.
    Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E., & Ringden, O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57(1), 11–20.PubMedGoogle Scholar
  49. 49.
    Inoue, S., Popp, F. C., Koehl, G. E., et al. (2006). Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model. Transplantation, 81(11), 1589–1595.PubMedGoogle Scholar
  50. 50.
    Ding, Y., Xu, D., Feng, G., et al. (2009). Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes, 58(8), 1797–1806.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Han, K. H., Kang, H. G., Gil, H. J., et al. (2010). The immunosuppressive effect of embryonic stem cells and mesenchymal stem cells on both primary and secondary alloimmune responses. Transplant Immunology, 23(3), 141–146.PubMedGoogle Scholar
  52. 52.
    Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., et al. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Zhou, H. P., Yi, D. H., Yu, S. Q., et al. (2006). Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplantation Proceedings, 38(9), 3046–3051.PubMedGoogle Scholar
  54. 54.
    Zangi, L., Margalit, R., Reich-Zeliger, S., et al. (2009). Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells, 27(11), 2865–2874.PubMedGoogle Scholar
  55. 55.
    Wu, H., Wen, D., & Mahato, R. I. (2013). Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model. Molecular Therapy, 21(9), 1778–1786.PubMedGoogle Scholar
  56. 56.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.PubMedGoogle Scholar
  57. 57.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.PubMedGoogle Scholar
  58. 58.
    Mougiakakos, D., Jitschin, R., Johansson, C. C., et al. (2011). The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 117(18), 4826–4835.PubMedGoogle Scholar
  59. 59.
    Nguyen, T., Arthur, A., Hayball, J., & Gronthos, S. D. (2013). EphB and ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells and Development, 22(20), 2751–2764.PubMedGoogle Scholar
  60. 60.
    Sioud, M., Mobergslien, A., Boudabous, A., & Floisand, Y. (2011). Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins. International Journal of Oncology, 38(2), 385–390.PubMedGoogle Scholar
  61. 61.
    Sioud, M. (2011). New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scandinavian Journal of Immunology, 73(2), 79–84.PubMedGoogle Scholar
  62. 62.
    Sioud, M., Mobergslien, A., Boudabous, A., & Floisand, Y. (2010). Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 71(4), 267–274.PubMedGoogle Scholar
  63. 63.
    Lepelletier, Y., Lecourt, S., Renand, A., et al. (2010). Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells and Development, 19(7), 1075–1079.PubMedGoogle Scholar
  64. 64.
    Wada, N., Bartold, P. M., & Gronthos, S. (2011). Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow stromal/stem cells. Stem Cells and Development, 20(4), 647–659.PubMedGoogle Scholar
  65. 65.
    Le Blanc, K., Rasmusson, I., Gotherstrom, C., et al. (2004). Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scandinavian Journal of Immunology, 60(3), 307–315.PubMedGoogle Scholar
  66. 66.
    Luz-Crawford, P., Kurte, M., Bravo-Alegria, J., et al. (2013). Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research and Therapy, 4(3), 65.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Batten, P., Sarathchandra, P., Antoniw, J. W., et al. (2006). Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Engineering, 12(8), 2263–2273.PubMedGoogle Scholar
  68. 68.
    Sheng, H., Wang, Y., Jin, Y., et al. (2008). A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846–857.PubMedGoogle Scholar
  69. 69.
    Luz-Crawford, P., Noel, D., Fernandez, X., et al. (2012). Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One, 7(9), e45272.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Xue, Q., Luan, X. Y., Gu, Y. Z., et al. (2010). The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells and Development, 19(1), 27–38.PubMedGoogle Scholar
  71. 71.
    Najar, M., Raicevic, G., Jebbawi, F., et al. (2012). Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunology Letters, 146(1–2), 50–56.PubMedGoogle Scholar
  72. 72.
    Opitz, C. A., Litzenburger, U. M., Lutz, C., et al. (2009). Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells, 27(4), 909–919.PubMedGoogle Scholar
  73. 73.
    Akiyama, K., Chen, C., Wang, D., et al. (2012). Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell, 10(5), 544–555.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Holmannova, D., Kolackova, M., Kondelkova, K., et al. (2012). CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; Part I: CD200/CD200R structure, activation, and function. Acta Medica (Hradec Králové), 55(1), 12–17.Google Scholar
  75. 75.
    Gorczynski, R. M., Chen, Z., Khatri, I., & Yu, K. (2011). Graft-infiltrating cells expressing a CD200 transgene prolong allogeneic skin graft survival in association with local increases in Foxp3(+)Treg and mast cells. Transplant Immunology, 25(4), 187–193.PubMedGoogle Scholar
  76. 76.
    Gorczynski, R. M., Chen, Z., He, W., et al. (2009). Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. Journal of Immunology, 183(3), 1560–1568.Google Scholar
  77. 77.
    Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105(5), 2214–2219.PubMedGoogle Scholar
  78. 78.
    Zhang, W., Ge, W., Li, C., et al. (2004). Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells and Development, 13(3), 263–271.PubMedGoogle Scholar
  79. 79.
    Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105(10), 4120–4126.PubMedGoogle Scholar
  80. 80.
    Li, F. R., Wang, X. G., Deng, C. Y., et al. (2010). Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clinical and Experimental Immunology, 161(2), 357–363.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Chen, H. W., Chen, H. Y., Wang, L. T., et al. (2013). Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene Chemokines. Journal of Immunology, 190(10), 5065–5077.Google Scholar
  82. 82.
    Liu, W. H., Liu, J. J., Wu, J., et al. (2013). Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS One, 8(1), e55487.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Wang, Q., Sun, B., Wang, D., et al. (2008). Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scandinavian Journal of Immunology, 68(6), 607–615.PubMedGoogle Scholar
  84. 84.
    Ge, W., Jiang, J., Arp, J., et al. (2010). Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation, 90(12), 1312–1320.PubMedGoogle Scholar
  85. 85.
    Spaggiari, G. M., & Moretta, L. (2012). Interactions between mesenchymal stem cells and dendritic cells. Advances in Biochemical Engineering/Biotechnology. doi:10.1007/10_2012_154.
  86. 86.
    Du Rocher, B., Mencalha, A. L., Gomes, B. E., & Abdelhay, E. (2012). Mesenchymal stromal cells impair the differentiation of CD14(++) CD16(-) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activate monocytes. Cytotherapy, 14(1), 12–25.PubMedGoogle Scholar
  87. 87.
    Lai, H. Y., Yang, M. J., Wen, K. C., et al. (2010). Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Engineering Part A, 16(9), 2987–2997.PubMedGoogle Scholar
  88. 88.
    Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.PubMedGoogle Scholar
  89. 89.
    Djouad, F., Charbonnier, L. M., Bouffi, C., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25(8), 2025–2032.PubMedGoogle Scholar
  90. 90.
    Chen, L., Zhang, W., Yue, H., et al. (2007). Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells and Development, 16(5), 719–731.PubMedGoogle Scholar
  91. 91.
    Aldinucci, A., Rizzetto, L., Pieri, L., et al. (2010). Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation. Journal of Immunology, 185(9), 5102–5110.Google Scholar
  92. 92.
    English, K., Barry, F. P., & Mahon, B. P. (2008). Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters, 115(1), 50–58.PubMedGoogle Scholar
  93. 93.
    Chiesa, S., Morbelli, S., Morando, S., et al. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Li, H., Guo, Z., Jiang, X., et al. (2008). Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells, 26(10), 2531–2541.PubMedGoogle Scholar
  95. 95.
    Zhao, Z. G., Xu, W., Sun, L., et al. (2012). Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunological Investigations, 41(2), 183–198.PubMedGoogle Scholar
  96. 96.
    Zhang, B., Liu, R., Shi, D., et al. (2009). Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood, 113(1), 46–57.PubMedGoogle Scholar
  97. 97.
    Weng, J. Y., Huang, X., Lai, P. L., et al. (2012). A method for induction of mouse CD8alpha(+);CD11b(+);jagged2(high);regulatory dendritic cells with mesenchymal stem cells in vitro. Chinese Journal of Cellular and Molecular Immunology, 28(6), 568–571.PubMedGoogle Scholar
  98. 98.
    Berman, D. M., Willman, M. A., Han, D., et al. (2010). Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes, 59(10), 2558–2568.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67(10), 1187–1194.PubMedCentralPubMedGoogle Scholar
  100. 100.
    English, K., Ryan, J. M., Tobin, L., et al. (2009). Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clinical and Experimental Immunology, 156(1), 149–160.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Hsu, W. T., Lin, C. H., Chiang, B. L., et al. (2013). Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-gamma+CD4+ regulatory T cells to control transplant arteriosclerosis. Journal of Immunology, 190(5), 2372–2380.Google Scholar
  102. 102.
    Patel, S. A., Meyer, J. R., Greco, S. J., et al. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. Journal of Immunology, 184(10), 5885–5894.Google Scholar
  103. 103.
    Bacigalupo, A., Valle, M., Podestà, M., et al. (2005). T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Experimental Hematology, 33(7), 819–827.PubMedGoogle Scholar
  104. 104.
    Jorgensen, C., Djouad, F., Fritz, V., et al. (2003). Mesenchymal stem cells and rheumatoid arthritis. Joint, Bone, Spine, 70(6), 483–485.PubMedGoogle Scholar
  105. 105.
    Neef, K., Choi, Y. H., Weichel, A., et al. (2012). The influence of cardiovascular risk factors on bone marrow mesenchymal stromal cell fitness. Cytotherapy, 14(6), 670–678.PubMedGoogle Scholar
  106. 106.
    Bocelli-Tyndall, C., Bracci, L., Spagnoli, G., et al. (2007). Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology, 46(3), 403–408.PubMedGoogle Scholar
  107. 107.
    Perez-Simon, J. A., Tabera, S., Sarasquete, M. E., et al. (2009). Mesenchymal stem cells are functionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy, 11(6), 698–705.PubMedGoogle Scholar
  108. 108.
    Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitsky, V. (2007). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82(4), 887–893.PubMedGoogle Scholar
  109. 109.
    Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2, 8.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Badillo, A. T., Beggs, K. J., Javazon, E. H., Tebbets, J. C., & Flake, A. W. (2007). Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response. Biology of Blood and Marrow Transplantation, 13(4), 412–422.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Rafei, M., Birman, E., Forner, K., & Galipeau, J. (2009). Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Molecular Therapy, 17(10), 1799–1803.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Schu, S., Nosov, M., O’Flynn, L., et al. (2012). Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 16(9), 2094–2103.PubMedGoogle Scholar
  114. 114.
    Griffin, M. D., Ritter, T., & Mahon, B. P. (2010). Immunological aspects of allogeneic mesenchymal stem cell therapies. Human Gene Therapy, 21(12), 1641–1655.PubMedGoogle Scholar
  115. 115.
    Griffin, M. D., Ryan, A. E., Alagesan, S., et al. (2013). Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunology and Cell Biology, 91(1), 40–51.PubMedGoogle Scholar
  116. 116.
    Sbano, P., Cuccia, A., Mazzanti, B., et al. (2008). Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model. Archives of Dermatological Research, 300(3), 115–124.PubMedGoogle Scholar
  117. 117.
    Casiraghi, F., Azzollini, N., Cassis, P., et al. (2008). Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. Journal of Immunology, 181(6), 3933–3946.Google Scholar
  118. 118.
    Popp, F. C., Eggenhofer, E., Renner, P., et al. (2008). Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant Immunology, 20(1–2), 55–60.PubMedGoogle Scholar
  119. 119.
    Eggenhofer, E., Steinmann, J. F., Renner, P., et al. (2011). Mesenchymal stem cells together with mycophenolate mofetil inhibit antigen presenting cell and T cell infiltration into allogeneic heart grafts. Transplant Immunology, 24(3), 157–163.PubMedGoogle Scholar
  120. 120.
    Eggenhofer, E., Renner, P., Soeder, Y., et al. (2011). Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transplant Immunology, 25(2–3), 141–147.PubMedGoogle Scholar
  121. 121.
    Jia, Z., Jiao, C., Zhao, S., et al. (2012). Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Experimental Eye Research, 102, 44–49.PubMedGoogle Scholar
  122. 122.
    Seifert, M., Stolk, M., Polenz, D., & Volk, H. D. (2012). Detrimental effects of rat mesenchymal stromal cell pre-treatment in a model of acute kidney rejection. Frontiers in Immunology, 3, 202.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Ge, W., Jiang, J., Baroja, M. L., et al. (2009). Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. American Journal of Transplantation, 9(8), 1760–1772.PubMedGoogle Scholar
  124. 124.
    Solari, M. G., Srinivasan, S., Boumaza, I., et al. (2009). Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. Journal of Autoimmunity, 32(2), 116–124.PubMedGoogle Scholar
  125. 125.
    Krampera, M., Glennie, S., Dyson, J., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9), 3722–3729.PubMedGoogle Scholar
  126. 126.
    Chan, W. K., Lau, A. S., Li, J. C., et al. (2008). MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Experimental Hematology, 36(11), 1545–1555.PubMedGoogle Scholar
  127. 127.
    Polchert, D., Sobinsky, J., Douglas, G., et al. (2008). IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. European Journal of Immunology, 38(6), 1745–1755.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Krampera, M., Cosmi, L., Angeli, R., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.PubMedGoogle Scholar
  129. 129.
    Ren, G., Zhang, L., Zhao, X., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.PubMedGoogle Scholar
  130. 130.
    Tobin, L. M., Healy, M. E., English, K., & Mahon, B. P. (2013). Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease. Clinical and Experimental Immunology, 172(2), 333–348.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Erkers, T., Nava, S., Yosef, J., Ringden, O., & Kaipe, H. (2013). Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells and Development, 22(19), 2596–2605.PubMedGoogle Scholar
  132. 132.
    Duijvestein, M., Wildenberg, M. E., Welling, M. M., et al. (2011). Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells, 29(10), 1549–1558.PubMedGoogle Scholar
  133. 133.
    Meisel, R., Zibert, A., Laryea, M., et al. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619–4621.PubMedGoogle Scholar
  134. 134.
    Munn, D. H., Zhou, M., Attwood, J. T., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281(5380), 1191–1193.PubMedGoogle Scholar
  135. 135.
    Ryan, J. M., Barry, F., Murphy, J. M., & Mahon, B. P. (2007). Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical and Experimental Immunology, 149(2), 353–363.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Francois, M., Romieu-Mourez, R., Li, M., & Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy, 20(1), 187–195.PubMedGoogle Scholar
  137. 137.
    Wada, N., Menicanin, D., Shi, S., Bartold, P. M., & Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 219(3), 667–676.PubMedGoogle Scholar
  138. 138.
    Freeman, G. J., Long, A. J., Iwai, Y., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 192(7), 1027–1034.PubMedCentralPubMedGoogle Scholar
  139. 139.
    English, K., Barry, F. P., Field-Corbett, C. P., & Mahon, B. P. (2007). IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunology Letters, 110(2), 91–100.PubMedGoogle Scholar
  140. 140.
    Chou, H. S., Hsieh, C. C., Charles, R., et al. (2012). Myeloid-derived suppressor cells protect islet transplants by B7-H1 mediated enhancement of T regulatory cells. Transplantation, 93(3), 272–282.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Francisco, L. M., Salinas, V. H., Brown, K. E., et al. (2009). PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of Experimental Medicine, 206(13), 3015–3029.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Fallarino, F., Asselin-Paturel, C., Vacca, C., et al. (2004). Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. Journal of Immunology, 173(6), 3748–3754.Google Scholar
  143. 143.
    Lee, S., Szilagyi, E., Chen, L., et al. (2012). Activated mesenchymal stem cells increase wound tensile strength in aged mouse model via macrophages. The Journal of Surgical Research, 181(1), 20–24.Google Scholar
  144. 144.
    Kortesidis, A., Zannettino, A., Isenmann, S., et al. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 105(10), 3793–3801.PubMedGoogle Scholar
  145. 145.
    Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106(13), 4057–4065.PubMedGoogle Scholar
  146. 146.
    Gieseke, F., Schutt, B., Viebahn, S., et al. (2007). Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNgammaR1 signaling and IDO expression. Blood, 110(6), 2197–2200.PubMedGoogle Scholar
  147. 147.
    Potian, J. A., Aviv, H., Ponzio, N. M., Harrison, J. S., & Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. Journal of Immunology, 171(7), 3426–3434.Google Scholar
  148. 148.
    Gotherstrom, C., Lundqvist, A., Duprez, I. R., et al. (2011). Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy, 13(3), 269–278.PubMedGoogle Scholar
  149. 149.
    Campeau, P. M., Rafei, M., Francois, M., et al. (2009). Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Molecular Therapy, 17(2), 369–372.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Wang, G. Q., Xu, J. R., Wang, R., et al. (2006). Inhibitory effect of mesenchymal stem cells carrying murine beta defensin 2 on malignant ascites in mice. Chinese Journal of Cancer, 25(6), 657–662.PubMedGoogle Scholar
  151. 151.
    Ren, G., Liu, Y., Zhao, X., et al. (2013). Tumor resident mesenchymal stromal cells endow naive stromal cells with tumor-promoting properties. Oncogene. doi:10.1038/onc.2013.387.Google Scholar
  152. 152.
    Nishimura, K., Semba, S., Aoyagi, K., Sasaki, H., & Yokozaki, H. (2012). Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology, 79(6), 290–306.PubMedGoogle Scholar
  153. 153.
    Rosland, G. V., Svendsen, A., Torsvik, A., et al. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69(13), 5331–5339.PubMedGoogle Scholar
  154. 154.
    Breitbach, M., Bostani, T., Roell, W., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.PubMedGoogle Scholar
  155. 155.
    Kunter, U., Rong, S., Boor, P., et al. (2007). Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. Journal of the American Society of Nephrology, 18(6), 1754–1764.PubMedGoogle Scholar
  156. 156.
    Prigozhina, T. B., Khitrin, S., Elkin, G., et al. (2008). Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Experimental Hematology, 36(10), 1370–1376.PubMedGoogle Scholar
  157. 157.
    Du, J., Zhou, L., Chen, X., et al. (2012). IFN-gamma-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. The International Journal of Biochemistry Cell Biology, 44(8), 1305–1314.PubMedGoogle Scholar
  158. 158.
    Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. The Journal of Clinical Investigation, 117(5), 1147–1154.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Zhang, X. M., Jiao, C. N., Jia, Z., et al. (2012). Investigation of the role of mesenchymal stem cells on keratoplasty rejection. Chinese Journal of Ophthalmology, 48(8), 733–738.PubMedGoogle Scholar
  160. 160.
    Perico, N., Casiraghi, F., Introna, M., et al. (2011). Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clinical Journal of the American Society of Nephrology, 6(2), 412–422.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Peng, Y., Ke, M., Xu, L., et al. (2013). Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation, 95(1), 161–168.PubMedGoogle Scholar
  162. 162.
    Reinders, M. E., de Fijter, J. W., Roelofs, H., et al. (2013). Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Translational Medicine, 2(2), 107–111.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Perico, N., Casiraghi, F., Gotti, E., et al. (2013). Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transplant International, 26(9), 867–878.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kisha Nandini Sivanathan
    • 1
    • 2
  • Stan Gronthos
    • 3
  • Darling Rojas-Canales
    • 1
  • Benjamin Thierry
    • 4
  • P. Toby Coates
    • 1
    • 2
  1. 1.School of Medicine, Faculty of Health SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Centre for Clinical and Experimental TransplantationRoyal Adelaide HospitalAdelaideAustralia
  3. 3.University of Adelaide, School of Medical SciencesAdelaideAustralia
  4. 4.Ian Wark Research InstituteUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations