Stem Cell Reviews and Reports

, Volume 10, Issue 2, pp 177–190 | Cite as

The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine

  • Ana M. Martins
  • Gordana Vunjak-Novakovic
  • Rui L. Reis
Article

Abstract

The recent availability of human cardiomyocytes derived from induced pluripotent stem (iPS) cells opens new opportunities to build in vitro models of cardiac disease, screening for new drugs, and patient-specific cardiac therapy. Notably, the use of iPS cells enables studies in the wide pool of genotypes and phenotypes. We describe progress in reprogramming of induced pluripotent stem (iPS) cells towards the cardiac lineage/differentiation. The focus is on challenges of cardiac disease modeling using iPS cells and their potential to produce safe, effective and affordable therapies/applications with the emphasis of cardiac tissue engineering. We also discuss implications of human iPS cells to biological research and some of the future needs.

Keywords

Reprogramming Pluripotency Induced pluripotent stem cells Cardiac differentiation Patient-specific stem cells Cardiac disease models Cardiac tissue engineering Regenerative medicine 

References

  1. 1.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.PubMedGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedGoogle Scholar
  3. 3.
    Pinto do, O. P., Kolterud, A., & Carlsson, L. (1998). Expression of the LIM-homeobox gene LH2 generates immortalized Steel factor-dependent multipotent hematopoietic precursors. EMBO Journal, 17(19), 5744–5756.Google Scholar
  4. 4.
    Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K., & Agata, K. (1999). Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Developmental Biology, 206(1), 73–87.PubMedGoogle Scholar
  5. 5.
    Seydoux, G., & Braun, R. E. (2006). Pathway to totipotency: Lessons from germ cells. Cell, 127(5), 891–904.PubMedGoogle Scholar
  6. 6.
    Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Human Reproduction, 23(8), 1742–1747.PubMedGoogle Scholar
  7. 7.
    Yoshida, Y., & Yamanaka, S. (2010). Recent stem cell advances: Induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation, 122(1), 80–87.PubMedGoogle Scholar
  8. 8.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedGoogle Scholar
  9. 9.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedGoogle Scholar
  10. 10.
    Yu, J. Y., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedGoogle Scholar
  11. 11.
    Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Lowry, W. E., Richter, L., Yachechko, R., et al. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2883–2888.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Huangfu, D. W., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.PubMedGoogle Scholar
  14. 14.
    Kim, J. B., Zaehres, H., Wu, G. M., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–U54.PubMedGoogle Scholar
  15. 15.
    Park, I. H., Zhao, R., West, J. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–U1.PubMedGoogle Scholar
  16. 16.
    Loh, Y. H., Hartung, O., Li, H., et al. (2010). Reprogramming of T Cells from human peripheral blood. Cell Stem Cell, 7(1), 15–19.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Aoi, T., Yae, K., Nakagawa, M., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.PubMedGoogle Scholar
  18. 18.
    Sugii, S., Kida, Y., Kawamura, T., et al. (2010). Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3558–3563.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3(3), 340–345.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Stadtfeld, M., Maherali, N., Breault, D. T., & Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2(3), 230–240.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Yu, J. Y., Hu, K. J., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Shao, L. J., Feng, W., Sun, Y., et al. (2009). Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. Cell Research, 19(3), 296–306.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Sommer, C. A., Stadtfeld, M., Murphy, G. J., Hochedlinger, K., Kotton, D. N., & Mostoslavsky, G. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.PubMedGoogle Scholar
  24. 24.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhou, W. B., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–2674.PubMedGoogle Scholar
  27. 27.
    Okita, K., Nakagawa, M., Hong, H. J., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.PubMedGoogle Scholar
  28. 28.
    Si-Tayeb, K., Noto, F. K., Sepac, A., et al. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Developmental Biology, 10.Google Scholar
  29. 29.
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–U112.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Belay, E., Matrai, J., Acosta-Sanchez, A., et al. (2010). Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: A nonviral paradigm for coaxed differentiation. Stem Cells, 28(10), 1760–1771.PubMedGoogle Scholar
  32. 32.
    Kim, D., Kim, C. H., Moon, J. I., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472–476.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Zhou, H. Y., Wu, S. L., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381–384.PubMedGoogle Scholar
  34. 34.
    Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming to Pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Miyoshi, N., Ishii, H., Nagano, H., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell, 8(6), 633–638.PubMedGoogle Scholar
  36. 36.
    Subramanyam, D., Lamouille, S., Judson, R. L., et al. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 29(5), 443–+.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Sridharan, R., & Plath, K. (2011). Small RNAs loom large during reprogramming. Cell Stem Cell, 8(6), 599–601.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 85(8), 348–362.Google Scholar
  39. 39.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–U1.PubMedGoogle Scholar
  40. 40.
    Xu, Y., Shi, Y., & Ding, S. (2008). A chemical approach to stem-cell biology and regenerative medicine. Nature, 453(7193), 338–344.PubMedGoogle Scholar
  41. 41.
    Huangfu, D. W., Maehr, R., Guo, W. J., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.PubMedGoogle Scholar
  42. 42.
    Cho, H. J., Lee, C. S., Kwon, Y. W., et al. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116(3), 386–395.PubMedGoogle Scholar
  43. 43.
    Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Scholer, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6), 525–528.PubMedGoogle Scholar
  44. 44.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedGoogle Scholar
  45. 45.
    Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.PubMedGoogle Scholar
  46. 46.
    Foster, K. W., Liu, Z., Nail, C. D., et al. (2005). Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 24(9), 1491–1500.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Rageul, J., Mottier, S., Jarry, A., et al. (2009). KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. International Journal of Cancer, 125(12), 2802–2809.Google Scholar
  48. 48.
    Martinez-Fernandez, A., Nelson, T. J., Yamada, S., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105(7), 648–656.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y., & Terzic, A. (2010). c-MYC-independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14152–14157.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3), 237–241.PubMedGoogle Scholar
  52. 52.
    Esteban, M. A., Wang, T., Qin, B. M., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1), 71–79.PubMedGoogle Scholar
  53. 53.
    Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.PubMedGoogle Scholar
  54. 54.
    Marion, R. M., Strati, K., Li, H., et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149–U119.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kawamura, T., Suzuki, J., Wang, Y. V., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–U107.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Hong, H., Takahashi, K., Ichisaka, T., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–U95.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Kim, S., Park, C., Han, J. W., et al. (2009). Generation of induced pluripotent stem cells from peripheral blood of coronary artery disease patients. Circulation, 120(18), S1091–S1091.Google Scholar
  58. 58.
    Kattman, S. J., Witty, A. D., Gagliardi, M., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2), 228–240.PubMedGoogle Scholar
  59. 59.
    Meng, X. L., Shen, J. S., Kawagoe, S., Ohashi, T., Brady, R. O., & Eto, Y. (2010). Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7886–7891.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Niibe, K., Kawamura, Y., Araki, D., et al. (2011). Purified mesenchymal stem cells are an efficient source for iPS cell induction. Plos One, 6(3).Google Scholar
  61. 61.
    Sun, N., Panetta, N. J., Gupta, D. M., et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15720–15725.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Cai, J., Li, W., Su, H., et al. (2010). Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal of Biological Chemistry, 285(15), 11227–11234.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Hanna, J., Markoulaki, S., Schorderet, P., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–264.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Current Biology, 18(12), 890–894.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Neubauer, S. (2007). Mechanisms of disease - the failing heart - an engine out of fuel. New England Journal of Medicine, 356(11), 1140–1151.PubMedGoogle Scholar
  66. 66.
    Mancini, D., & Lietz, K. (2010). Selection of cardiac transplantation candidates in 2010. Circulation, 122(2), 173–183.PubMedGoogle Scholar
  67. 67.
    Egashira, T., Yuasa, S., & Fukuda, K. (2011). Induced pluripotent stem cells in cardiovascular medicine. Stem Cells International, 2011(348960).Google Scholar
  68. 68.
    Narazaki, G., Uosaki, H., Teranishi, M., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5), 498–506.PubMedGoogle Scholar
  69. 69.
    Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Mummery, C., Ward-van Oostwaard, D., Doevendans, P., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes - role of coculture with visceral endoderm-like cells. Circulation, 107(21), 2733–2740.PubMedGoogle Scholar
  71. 71.
    Passier, R., Oostwaard, D. W. V., Snapper, J., et al. (2005). Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23(6), 772–780.PubMedGoogle Scholar
  72. 72.
    Freund, C., Oostwaard, D. W. V., Monshouwer-Kloots, J., et al. (2008). Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells, 26(3), 724–733.PubMedGoogle Scholar
  73. 73.
    Lahti, A. L., Kujala, V. J., Chapman, H., et al. (2012). Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Disease Models & Mechanisms, 5(2), 220–230.Google Scholar
  74. 74.
    Denning, C., Allegrucci, C., Priddle, H., et al. (2006). Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. International Journal of Developmental Biology, 50(1), 27–37.PubMedGoogle Scholar
  75. 75.
    Burridge, P. W., Anderson, D., Priddle, H., et al. (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells, 25(4), 929–938.PubMedGoogle Scholar
  76. 76.
    Zhang, J. H., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), E30–E41.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Narsinh, K., Narsinh, K. H., & Wu, J. C. (2011). Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circulation Research, 108(9), 1146–1156.PubMedGoogle Scholar
  78. 78.
    Burridge, P. W., Thompson, S., Millrod, M. A., et al. (2011). A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. Plos One, 6(4).Google Scholar
  79. 79.
    Egashira, T., Yuasa, S., Suzuki, T., et al. (2012). Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovascular Research, 95(4), 419–429.PubMedGoogle Scholar
  80. 80.
    Bellin, M., Marchetto, M. C., Gage, F. H., & Mummery, C. L. (2012). Induced pluripotent stem cells: the new patient? Nature Reviews Molecular Cell Biology, 13(11), 713–726.PubMedGoogle Scholar
  81. 81.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMedGoogle Scholar
  82. 82.
    Ojala, M., Rajala, K., Pekkanen-Mattila, M., Miettinen, M., Huhtala, H., & Aalto-Setala, K. (2012). Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. Plos One, 7(10).Google Scholar
  83. 83.
    Davis, R. P., Casini, S., van den Berg, C. W., et al. (2012). Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation, 125(25), 3079–+.PubMedGoogle Scholar
  84. 84.
    Moretti, A., Bellin, M., Welling, A., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. New England Journal of Medicine, 363(15), 1397–1409.PubMedGoogle Scholar
  85. 85.
    Ge, X., Ren, Y. M., Bartulos, O., et al. (2012). Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation, 126(14), 1695–+.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Sun, N., Yazawa, M., Liu, J. W., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4(130).Google Scholar
  87. 87.
    Ma, D., Wei, H., Lu, J., et al. (2013) Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart JGoogle Scholar
  88. 88.
    Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 108(3), 407–414.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Gepstein, L. (2002). Derivation and potential applications of human embryonic stem cells. Circulation Research, 91(10), 866–876.PubMedGoogle Scholar
  90. 90.
    Xu, C. H., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91(6), 501–508.PubMedGoogle Scholar
  91. 91.
    Yang, L., Soonpaa, M. H., Adler, E. D., et al. (2008). Human cardiovascular progenitor cells develop from a KDR plus embryonic-stem-cell-derived population. Nature, 453(7194), 524–U6.PubMedGoogle Scholar
  92. 92.
    Xu, H. S., Yi, B. A., Wu, H., et al. (2012). Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Research, 22(1), 142–154.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Zwi-Dantsis, L., Huber, I., Habib, M., et al. (2013). Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 34(21), 1575–1586.PubMedGoogle Scholar
  94. 94.
    Ng, E. S., Davis, R., Stanley, E. G., & Elefanty, A. G. (2008). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nature Protocols, 3(5), 768–776.PubMedGoogle Scholar
  95. 95.
    Xu, X. Q., Graichen, R., Soo, S. Y., et al. (2008). Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 76(9), 958–970.PubMedGoogle Scholar
  96. 96.
    Uosaki, H., Fukushima, H., Takeuchi, A., et al. (2011). Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. Plos One, 6(8).Google Scholar
  97. 97.
    Ban, K., Wile, B., Kim, S., et al. (2013). Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation, 128(17), 1897–1909.PubMedGoogle Scholar
  98. 98.
    Hattori, F., Chen, H., Yamashita, H., et al. (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nature Methods, 7(1), 61–U15.PubMedGoogle Scholar
  99. 99.
    Mauritz, C., Schwanke, K., Reppel, M., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5), 507–517.PubMedGoogle Scholar
  100. 100.
    Zhang, J. H., Soerens, A. G., Wilson, G. F., Yu, J. Y., Thomson, J. A., & Kamp, T. J. (2009). Human induced pluripotent stem cells free of vector and transgene sequences undergo cardiogenesis in defined conditions. Circulation, 120(18), S1123–S1124.Google Scholar
  101. 101.
    Germanguz, I., Sedan, O., Zeevi-Levin, N., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 15(1), 38–51.PubMedGoogle Scholar
  102. 102.
    van Laake, L. W., Qian, L., Cheng, P., et al. (2010). Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance. Circulation Research, 107(3), 340–347.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Xi, J. Y., Khalil, M., Shishechian, N., et al. (2010). Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. Faseb Journal, 24(8), 2739–2751.PubMedGoogle Scholar
  104. 104.
    Naito, A. T., Shiojima, I., Akazawa, H., Kikuchi, A., & Komuro, I. (2006). Developmental stage-specific roles of Wnt/ss-catenin signaling in cardiomyogenesis. Circulation, 114(18), 233–233.Google Scholar
  105. 105.
    Ueno, S., Weidinger, G., Osugi, T., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9685–9690.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Klaus, A., Saga, Y., Taketo, M. M., Tzahor, E., & Birchmeier, W. (2007). Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18531–18536.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Paige, S. L., Osugi, T., Afanasiev, O. K., Pabon, L., Reinecke, H., & Murry, C. E. (2010). Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. Plos One, 5(6).Google Scholar
  108. 108.
    Sa, S., & McCloskey, K. E. (2012). Stage-specific cardiomyocyte differentiation method for H7 and H9 human embryonic stem cells. Stem Cell Reviews and Reports, 8(4), 1120–1128.PubMedGoogle Scholar
  109. 109.
    Yuasa, S., Itabashi, Y., Koshimizu, U., et al. (2005). Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nature Biotechnology, 23(7), 897–897.Google Scholar
  110. 110.
    Cao, N., Liu, Z. M., Chen, Z. Y., et al. (2012). Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Research, 22(1), 219–236.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Fujiwara, M., Yan, P. S., Otsuji, T. G., et al. (2011). Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-a. Plos One, 6(2).Google Scholar
  112. 112.
    Polo, J. M., Liu, S., Figueroa, M. E., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–U130.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kim, K., Doi, A., Wen, B., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–U60.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Hu, Q. R., Friedrich, A. M., Johnson, L. V., & Clegg, D. O. (2010). Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells, 28(11), 1981–1991.PubMedGoogle Scholar
  115. 115.
    Osafune, K., Caron, L., Borowiak, M., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315.PubMedGoogle Scholar
  116. 116.
    Beqqali, A., Kloots, J., Ward-van Oostwaard, D., Mummery, C., & Passier, R. (2006). Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells, 24(8), 1956–1967.PubMedGoogle Scholar
  117. 117.
    Davis, R. P., van den Berg, C. W., Casini, S., Braam, S. R., & Mummery, C. L. (2011). Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends in Molecular Medicine, 17(9), 475–484.PubMedGoogle Scholar
  118. 118.
    Rosenzweig, A. (2010). Illuminating the potential of pluripotent stem cells. New England Journal of Medicine, 363(15), 1471–1472.PubMedGoogle Scholar
  119. 119.
    Belmonte, J. C., Ellis, J., Hochedlinger, K., & Yamanaka, S. (2009). Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nature Reviews Genetics, 10(12), 878–883.Google Scholar
  120. 120.
    Rolletschek, A., & Wobus, A. M. (2009). Induced human pluripotent stem cells: promises and open questions. Biological Chemistry, 390(9), 845–849.PubMedGoogle Scholar
  121. 121.
    Pei, D. Q., Xu, J. Y., Zhuang, Q. A., Tse, H. F., & Esteban, M. A. (2010). Induced pluripotent stem cell technology in regenerative medicine and biology. Bioreactor Systems for Tissue Engineering Ii: Strategies for the Expanison and Directed Differentiation of Stem Cells, 123(127–141).Google Scholar
  122. 122.
    Carvajal-Vergara, X., Sevilla, A., D’Souza, S. L., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299), 808–U12.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Lin, B., Kim, J., Li, Y. X., et al. (2012). High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovascular Research, 95(3), 327–335.PubMedGoogle Scholar
  124. 124.
    Itzhaki, I., Maizels, L., Huber, I., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–U113.PubMedGoogle Scholar
  125. 125.
    Matsa, E., Rajamohan, D., Dick, E., et al. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Dirschinger, R. J., Goedel, A., Moretti, A., Laugwitz, K. L., & Sinnecker, D. (2012). Recapitulating long-QT syndrome using induced pluripotent stem cell technology. Pediatric Cardiology, 33(6), 950–958.PubMedGoogle Scholar
  127. 127.
    Yazawa, M., Hsueh, B., Jia, X. L., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–U120.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Yazawa, M., & Dolmetsch, R. E. (2013). Modeling Timothy syndrome with iPS cells. Journal of Cardiovascular Translational Research, 6(1), 1–9.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Fatima, A., Xu, G. X., Shao, K. F., et al. (2011). In vitro modeling of Ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cellular Physiology and Biochemistry, 28(4), 579–592.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Jung, C. B., Moretti, A., Schnitzler, M. M. Y., et al. (2012). Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Molecular Medicine, 4(3), 180–191.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Liu, J., Verma, P. J., Evans-Galea, M. V., et al. (2011). Generation of induced pluripotent stem cell lines from Friedreich Ataxia patients. Stem Cell Reviews and Reports, 7(3), 703–713.PubMedGoogle Scholar
  132. 132.
    Du, J. T., Campau, E., Soragni, E., et al. (2012). Role of mismatch repair enzymes in GAA.TTC triplet-repeat expansion in Friedreich Ataxia induced pluripotent stem cells. Journal of Biological Chemistry, 287(35), 29861–29872.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Huang, H. P., Chen, P. H., Hwu, W. L., et al. (2011). Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Human Molecular Genetics, 20(24), 4851–4864.PubMedGoogle Scholar
  134. 134.
    Huang, H. P., Chuang, C. Y., & Kuo, H. C. (2012). Induced pluripotent stem cell technology for disease modeling and drug screening with emphasis on lysosomal storage diseases. Stem Cell Research & Therapy, 3.Google Scholar
  135. 135.
    Clegg, S., Gong, Q., Zhou, Z. and Adler, E (2011) A novel in vitro model of Danon disease confirms the critical role of LAMP2 in regulating autophagy. In AHA/ASA.Google Scholar
  136. 136.
    Kamp, T. J., & Lyons, G. E. (2009). On the road to iPS cell cardiovascular applications. Circulation Research, 105(7), 617–619.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Saha, K., & Jaenisch, R. (2009). Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5(6), 584–595.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Yoshida, Y., & Yamanaka, S. (2011). iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 50(2), 327–332.PubMedGoogle Scholar
  139. 139.
    Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Sarkozy, A., Digilio, M. C., & Dallapiccola, B. (2008). Leopard syndrome. Orphanet Journal of Rare Diseases, 3(13).Google Scholar
  141. 141.
    Marban, E. (2002). Cardiac channelopathies. Nature, 415(6868), 213–218.PubMedGoogle Scholar
  142. 142.
    Sanguinetti, M. C., & Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature, 440(7083), 463–469.PubMedGoogle Scholar
  143. 143.
    Goldenberg, I., & Moss, A. J. (2008). Long QT syndrome. Journal of the American College of Cardiology, 51(24), 2291–2300.PubMedGoogle Scholar
  144. 144.
    Wilde, A. A. M., & Bezzina, C. R. (2005). Genetics of cardiac arrhythmias. Heart, 91(10), 1352–1358.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Splawski, I., Timothy, K. W., Sharpe, L. M., et al. (2004). Ca(v)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.PubMedGoogle Scholar
  146. 146.
    Priori, S. G., Napolitano, C., Memmi, M., et al. (2002). Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation, 106(1), 69–74.PubMedGoogle Scholar
  147. 147.
    Scheinman, M. M., & Lam, J. (2006). Exercise-induced ventricular arrhythmias in patients with no structural cardiac disease. Annual Review of Medicine, 57(473–484).Google Scholar
  148. 148.
    Basso, C., Corrado, D., Marcus, F. I., Nava, A., & Thiene, G. (2009). Arrhythmogenic right ventricular cardiomyopathy. Lancet, 373(9671), 1289–1300.PubMedGoogle Scholar
  149. 149.
    Arad, M., Maron, B. J., Gorham, J. M., et al. (2005). Glycogen storage diseases presenting as hypertrophic cardiomyopathy. New England Journal of Medicine, 352(4), 362–372.PubMedGoogle Scholar
  150. 150.
    Vunjak-Novakovic, G. (2008). Patterning stem cell differentiation. Cell Stem Cell, 3(4), 362–363.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Stamm, C., Klose, K., & Choi, Y. H. (2010). Clinical application of stem cells in the cardiovascular system. Bioreactor Systems for Tissue Engineering Ii: Strategies for the Expanison and Directed Differentiation of Stem Cells, 123(293–317).Google Scholar
  152. 152.
    Soonpaa, M. H., Koh, G. Y., Klug, M. G., & Field, L. J. (1994). Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science, 264(5155), 98–101.PubMedGoogle Scholar
  153. 153.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.PubMedGoogle Scholar
  154. 154.
    Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., & Murry, C. E. (2001). Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33(5), 907–921.PubMedGoogle Scholar
  155. 155.
    Dow, J., Simkhovich, B. Z., Kedes, L., & Kloner, R. A. (2005). Washout of transplanted cells from the heart: A potential new hurdle for cell transplantation therapy. Cardiovascular Research, 67(2), 301–307.PubMedGoogle Scholar
  156. 156.
    Qiao, H., Surti, S., Choi, S. R., et al. (2009). Death and proliferation time course of stem cells transplanted in the myocardium. Molecular Imaging and Biology, 11(6), 408–414.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Hofmann, M., Wollert, K. C., Meyer, G. P., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.PubMedGoogle Scholar
  158. 158.
    Vunjak-Novakovic, G., Tandon, N., Godier, A., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: a review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327–342.PubMedGoogle Scholar
  160. 160.
    Zimmermann, W. H. (2008). Tissue engineering polymers flex their muscles. Nature Materials, 7(12), 932–933.PubMedGoogle Scholar
  161. 161.
    Rosellini, E., Cristallini, C., Barbani, N., Vozzi, G., & Giusti, P. (2009). Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. Journal of Biomedical Materials Research, Part A, 91A(2), 447–453.Google Scholar
  162. 162.
    Zhang, T., Wan, L. Q., Xiong, Z., et al. (2012). Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 6(9), 748–756.Google Scholar
  163. 163.
    Chimenti, I., Rizzitelli, G., Gaetani, R., et al. (2011). Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials, 32(35), 9271–9281.PubMedGoogle Scholar
  164. 164.
    Tandon, N., Marsano, A., Maidhof, R., Wan, L., Park, H., & Vunjak-Novakovic, G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), E115–E125.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Chi, N. H., Yang, M. C., Chung, T. W., Chen, J. Y., Chou, N. K., & Wang, S. S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541–5551.PubMedGoogle Scholar
  166. 166.
    Patra, C., Talukdar, S., Novoyatleva, T., et al. (2012). Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials, 33(9), 2673–2680.PubMedGoogle Scholar
  167. 167.
    Godier-Furnemont, A. F. G., Martens, T. P., Koeckert, M. S., et al. (2011). Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7974–7979.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Marsano, A., Maidhof, R., Luo, J. W., et al. (2013). The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 34(2), 393–401.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Kuo, Y. C., & Huang, M. J. (2012). Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(epsilon-caprolactone)-poly(beta-hydroxybutyrate) scaffolds. Biomaterials, 33(23), 5672–5682.PubMedGoogle Scholar
  170. 170.
    Wen, Y., Wang, F., Zhang, W. C., et al. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering Part A, 18(15–16), 1677–1685.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Miki, K., Uenaka, H., Saito, A., et al. (2012). Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Translational Medicine, 1(5), 430–437.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Mauritz, C., Martens, A., Rojas, S. V., et al. (2011). Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. European Heart Journal, 32(21), 2634–2641.PubMedGoogle Scholar
  174. 174.
    Okano, T., Yamada, N., Okuhara, M., Sakai, H., & Sakurai, Y. (1995). Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials, 16(4), 297–303.PubMedGoogle Scholar
  175. 175.
    Miki, K., Saito, A., Uenaka, H., et al. (2009). Cardiomyocyte sheets derived from induced pluripotent stem (iPS) cells improve cardiac function and attenuate cardiac remodeling in myocardial infarction in mice. Circulation, 120(18), S721–S721.Google Scholar
  176. 176.
    Haraguchi, Y., Matsuura, K., Shimizu, T., Yamato, M., & Okano, T. (2012). Expansion and cardiac differentiation of human iPS cells using a suspension culture system. Journal of Tissue Engineering and Regenerative Medicine, 6(252–252).Google Scholar
  177. 177.
    Matsuura, K. M., Shimizu, T. S., Wada, M. W., et al. (2012). Creation of cell sheet-based bioengineered heart tissue using ES/iPS cells-derived cells. Journal of Tissue Engineering and Regenerative Medicine, 6(103–103).Google Scholar
  178. 178.
    Sawa, Y., Miyagawa, S., Sakaguchi, T., et al. (2012). Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surgery Today, 42(2), 181–184.PubMedGoogle Scholar
  179. 179.
    Hibino, N., Duncan, D. R., Nalbandian, A., et al. (2012). Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. Journal of Thoracic and Cardiovascular Surgery, 143(3), 696–703.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Tulloch, N. L., Muskheli, V., Razumova, M. V., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109(1), 47–U195.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Eschenhagen, T., Fink, C., Remmers, U., et al. (1997). Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. Faseb Journal, 11(8), 683–694.PubMedGoogle Scholar
  182. 182.
    Zimmermann, W. H., Fink, C., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnology and Bioengineering, 68(1), 106–114.PubMedGoogle Scholar
  183. 183.
    Eschenhagen, T. (2011). The beat goes on: human heart muscle from pluripotent stem cells. Circulation Research, 109(1), 1–3.Google Scholar
  184. 184.
    Miura, K., Okada, Y., Aoi, T., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27(8), 743–745.PubMedGoogle Scholar
  185. 185.
    Yamanaka, S. (2010). Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell, 7(1), 1–2.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ana M. Martins
    • 1
    • 2
    • 3
  • Gordana Vunjak-Novakovic
    • 3
  • Rui L. Reis
    • 1
    • 2
    • 4
  1. 1.3B’s Research Group - Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
  4. 4.Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do BarcoGuimarãesPortugal

Personalised recommendations