Stem Cell Reviews and Reports

, Volume 9, Issue 5, pp 620–641 | Cite as

Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-inflammatory M2 Macrophages

  • M. H. AbumareeEmail author
  • M. A. Al Jumah
  • B. Kalionis
  • D. Jawdat
  • A. Al Khaldi
  • F. M. Abomaray
  • A. S. Fatani
  • L. W. Chamley
  • B. A. Knawy



Mesenchymal stem cells (MSCs) have a therapeutic potential in tissue repair because of capacity for multipotent differentiation and their ability to modulate the immune response. In this study, we examined the ability of human placental MSCs (pMSCs) to modify the differentiation of human monocytes into macrophages and assessed the influence of pMSCs on important macrophage functions.


We used GM-CSF to stimulate the differentiation of monocytes into the M1 macrophage pathway and then co-cultured these cells with pMSCs in the early stages of macrophage differentiation. We then evaluated the effect on differentiation by microscopic examination and by quantification of molecules important in the differentiation and immune functions of macrophages using flow cytometry and ELISA. The mechanism by which pMSCs could mediate their effects on macrophage differentiation was also studied.


The co-culture of pMSCs with monocytes stimulated to follow the inflammatory M1 macrophage differentiation pathway resulted in a shift to anti-inflammatory M2-like macrophage differentiation. This transition was characterized by morphological of changes typical of M2 macrophages, and by changes in cell surface marker expression including CD14, CD36, CD163, CD204, CD206, B7-H4 and CD11b, which are distinctive of M2 macrophages. Co-culture with pMSCs reduced the expression of the costimulatory molecules (CD40, CD80 and CD86) and increased the expression of co-inhibitory molecules (CD273, CD274 and B7-H4) as well as the surface expression of major histocompatibility complex (MHC-II) molecules. Furthermore, the secretion of IL-10 was increased while the secretion of IL-1β, IL-12 (p70) and MIP-1α was decreased; a profile typical of M2 macrophages. Finally, pMSCs induced the phagocytic activity and the phagocytosis of apoptotic cells associated with M2- like macrophages; again a profile typical of M2 macrophages. We found that the immunoregulatory effect of pMSCs on macrophage differentiation was mediated by soluble molecules acting partially via glucocorticoid and progesterone receptors.


We have shown that pMSCs can transition macrophages from an inflammatory M1 into an anti-inflammatory M2 phenotype. Our findings suggest a new immunosuppressive property of pMSCs that may be employed in the resolution of inflammation associated with inflammatory diseases and in tissue repair.


Placenta mesenchymal stem cells Immune suppression Macrophages Inflammation 



We would also like to thank the staff and patients of the Delivery Unit, King Abdul Aziz Medical City for their help in obtaining placentae. This study was supported by grants from King Abdulla International Medical Research Centre (Grant No. RC08/114) and King Abdulaziz City for Science and Technology (Grant No. ARP-29-186). Bill Kalionis was supported by NHMRC Grant No. 509178.

Conflict of Interest

The authors declare no potential conflicts of interest


  1. 1.
    Porada, C. D., Zanjani, E. D., & Almeida-Porad, G. (2006). Adult mesenchymal stem cells: a pluripotent population with multiple applications. Current Stem Cell Research & Therapy, 1, 365–369.CrossRefGoogle Scholar
  2. 2.
    Abumaree, M. H., Al Jumah, M. A., Kalionis, B., et al. (2013). Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Reviews, 9, 16–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Al Jumah, M. A., & Abumaree, M. H. (2012). The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). International Journal of Molecular Sciences, 13, 9298–9331.PubMedCrossRefGoogle Scholar
  4. 4.
    Abumaree, M., Al Jumah, M., Pace, R.A., Kalionis, B. (2011). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews.Google Scholar
  5. 5.
    Kim, J., & Hematti, P. (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology, 37, 1445–1453.PubMedCrossRefGoogle Scholar
  6. 6.
    Maggini, J., Mirkin, G., Bognanni, I., et al. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 5, e9252.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, Q. Z., Su, W. R., Shi, S. H., et al. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells, 28, 1856–1868.PubMedCrossRefGoogle Scholar
  8. 8.
    Dayan, V., Yannarelli, G., Billia, F., et al. (2011). Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Research in Cardiology, 106, 1299–1310.PubMedCrossRefGoogle Scholar
  9. 9.
    Nemeth, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta, N., Su, X., Popov, B., Lee, J. W., Serikov, V., & Matthay, M. A. (2007). Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. Journal of Immunology, 179, 1855–1863.Google Scholar
  11. 11.
    Adutler-Lieber, S., Ben-Mordechai, T., Naftali-Shani, N., et al. (2013). Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. Journal of Cardiovascular Pharmacology and Therapeutics, 18, 78–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11, 723–737.PubMedCrossRefGoogle Scholar
  13. 13.
    Palucka, K. A., Taquet, N., Sanchez-Chapuis, F., & Gluckman, J. C. (1998). Dendritic cells as the terminal stage of monocyte differentiation. Journal of Immunology, 160, 4587–4595.Google Scholar
  14. 14.
    Svensson, J., Jenmalm, M., Matussek, A., Geffers, R., Berg, G., & Ernerudh, J. (2011). Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. Journal of Immunology, 7, 3671–3682.CrossRefGoogle Scholar
  15. 15.
    Jeannin, P., Duluc, D., & Delneste, Y. (2011). IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy, 3, 23–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Buechler, C., Ritter, M., Orso, E., Langmann, T., Klucken, J., & Schmitz, G. (2000). Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. Journal of Leukocyte Biology, 67, 97–103.PubMedGoogle Scholar
  17. 17.
    Heusinkveld, M., de Vos van Steenwijk, P. J., Goedemans, R., et al. (2011). M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. Journal of Immunology, 187, 1157–1165.CrossRefGoogle Scholar
  18. 18.
    Rickard, A. J., & Young, M. J. (2009). Corticosteroid receptors, macrophages and cardiovascular disease. Journal of Molecular Endocrinology, 42, 449–459.PubMedCrossRefGoogle Scholar
  19. 19.
    Prewitt, C. M., Niesman, I. R., Kane, C. J., & Houle, J. D. (1997). Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Experimental Neurology, 148, 433–443.PubMedCrossRefGoogle Scholar
  20. 20.
    Chernykh, E. R., Shevela, E. Y., Sakhno, L. V., Tikhonova, M. A., Petrovsky, Y. L., Ostanin, A. A. (2010). The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cellular Therapy and Transplantation, 2.Google Scholar
  21. 21.
    Kigerl, K. A., Gensel, J. C., Ankeny, D. P., Alexander, J. K., Donnelly, D. J., & Popovich, P. G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29, 13435–13444.CrossRefGoogle Scholar
  22. 22.
    Svensson, J. J. M., Matussek, A., Geffers, R., Berg, G., & Ernerudh, J. (2011). Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. Journal of Immunology, 187(7), 3671–3682.CrossRefGoogle Scholar
  23. 23.
    Tait, A. S., Butts, C. L., & Sternberg, E. M. (2008). The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. Journal of Leukocyte Biology, 84, 924–931.PubMedCrossRefGoogle Scholar
  24. 24.
    Abumaree, M. H., Chamley, L. W., Badri, M., & El-Muzaini, M. F. (2012). Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? Journal of Reproductive Immunology, 94, 131–141.PubMedCrossRefGoogle Scholar
  25. 25.
    Waldo, S. W., Li, Y., Buono, C., et al. (2008). Heterogeneity of human macrophages in culture and in atherosclerotic plaques. The American Journal of Pathology, 172, 1112–1126.PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, M., Yang, Y., Yang, D., et al. (2009). The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology, 126, 220–232.PubMedCrossRefGoogle Scholar
  28. 28.
    Jung-Testas, I., & Baulieu, E. E. (1983). Inhibition of glucocorticosteroid action in cultured L-929 mouse fibroblasts by RU 486, a new anti-glucocorticosteroid of high affinity for the glucocorticosteroid receptor. Experimental Cell Research, 147, 177–182.PubMedCrossRefGoogle Scholar
  29. 29.
    Heng, B. C., Ye, C. P., Liu, H., et al. (2006). Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. Journal of Biomedical Science, 13, 433–445.PubMedCrossRefGoogle Scholar
  30. 30.
    Verreck, F. A., de Boer, T., Langenberg, D. M., van der Zanden, L., & Ottenhoff, T. H. (2006). Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. Journal of Leukocyte Biology, 79, 285–293.PubMedCrossRefGoogle Scholar
  31. 31.
    Lolmede, K., Campana, L., Vezzoli, M., et al. (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 85, 779–787.PubMedCrossRefGoogle Scholar
  32. 32.
    Komohara, Y., Ohnishi, K., Kuratsu, J., & Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. The Journal of Pathology, 216, 15–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Kryczek, I., Zou, L., Rodriguez, P., et al. (2006). B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. The Journal of Experimental Medicine, 203, 871–881.PubMedCrossRefGoogle Scholar
  34. 34.
    Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3, 23–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8, 958–969.PubMedCrossRefGoogle Scholar
  36. 36.
    Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.PubMedCrossRefGoogle Scholar
  37. 37.
    Ravichandran, K. S., & Lorenz, U. (2007). Engulfment of apoptotic cells: signals for a good meal. Nature Reviews Immunology, 7, 964–974.PubMedCrossRefGoogle Scholar
  38. 38.
    Erwig, L. P., & Henson, P. M. (2008). Clearance of apoptotic cells by phagocytes. Cell Death and Differentiation, 15, 243–250.PubMedCrossRefGoogle Scholar
  39. 39.
    Anton, K., Banerjee, D., & Glod, J. (2012). Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One, 7, e35036.PubMedCrossRefGoogle Scholar
  40. 40.
    Sallusto, F., & Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. The Journal of Experimental Medicine, 179, 1109–1118.PubMedCrossRefGoogle Scholar
  41. 41.
    Li, Y., Li, X. C., Zheng, X. X., Wells, A. D., Turka, L. A., & Strom, T. B. (1999). Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Medicine, 5, 1298–1302.PubMedCrossRefGoogle Scholar
  42. 42.
    Ou, D., Wang, X., Metzger, D. L., et al. (2006). Suppression of human T-cell responses to beta-cells by activation of B7-H4 pathway. Cell Transplantation, 15, 399–410.PubMedCrossRefGoogle Scholar
  43. 43.
    Prasad, D. V., Richards, S., Mai, X. M., & Dong, C. (2003). B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity, 18, 863–873.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang, X., Hao, J., Metzger, D. L., et al. (2009). Local expression of B7-H4 by recombinant adenovirus transduction in mouse islets prolongs allograft survival. Transplantation, 87, 482–490.PubMedCrossRefGoogle Scholar
  45. 45.
    Ozkaynak, E., Wang, L., Goodearl, A., et al. (2002). Programmed death-1 targeting can promote allograft survival. Journal of Immunology, 169, 6546–6553.Google Scholar
  46. 46.
    Watford, W. T., Moriguchi, M., Morinobu, A., & O’Shea, J. J. (2003). The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews, 14, 361–368.CrossRefGoogle Scholar
  47. 47.
    Lichtman, A. H., Chin, J., Schmidt, J. A., & Abbas, A. K. (1988). Role of interleukin 1 in the activation of T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 85, 9699–9703.PubMedCrossRefGoogle Scholar
  48. 48.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRefGoogle Scholar
  49. 49.
    Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, 389–397.PubMedCrossRefGoogle Scholar
  50. 50.
    Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.PubMedCrossRefGoogle Scholar
  51. 51.
    Groh, M. E., Maitra, B., Szekely, E., & Koc, O. N. (2005). Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 33, 928–934.PubMedCrossRefGoogle Scholar
  52. 52.
    Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.PubMedCrossRefGoogle Scholar
  53. 53.
    Dwyer, R. M., Khan, S., Barry, F. P., O’Brien, T., & Kerin, M. J. (2010). Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Research & Therapy, 1, 25.CrossRefGoogle Scholar
  54. 54.
    Platt, N., Suzuki, H., Kurihara, Y., Kodama, T., & Gordon, S. (1996). Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America, 93, 12456–12460.PubMedCrossRefGoogle Scholar
  55. 55.
    Greenberg, M. E., Sun, M., Zhang, R., Febbraio, M., Silverstein, R., & Hazen, S. L. (2006). Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. The Journal of Experimental Medicine, 203, 2613–2625.PubMedCrossRefGoogle Scholar
  56. 56.
    Devitt, A., Pierce, S., Oldreive, C., Shingler, W. H., & Gregory, C. D. (2003). CD14-dependent clearance of apoptotic cells by human macrophages: the role of phosphatidylserine. Cell Death and Differentiation, 10, 371–382.PubMedCrossRefGoogle Scholar
  57. 57.
    Schaer, D. J., Alayash, A. I., & Buehler, P. W. (2007). Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. Antioxidants & Redox Signaling, 9, 991–999.CrossRefGoogle Scholar
  58. 58.
    Philippidis, P., Mason, J. C., Evans, B. J., et al. (2004). Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circulation Research, 94, 119–126.PubMedCrossRefGoogle Scholar
  59. 59.
    Hamann, W., Floter, A., Schmutzler, W., & Zwadlo-Klarwasser, G. (1995). Characterization of a novel anti-inflammatory factor produced by RM3/1 macrophages derived from glucocorticoid treated human monocytes. Inflammation Research, 44, 535–540.PubMedCrossRefGoogle Scholar
  60. 60.
    Goerdt, S., & Orfanos, C. E. (1999). Other functions, other genes: alternative activation of antigen-presenting cells. Immunity, 10, 137–142.PubMedCrossRefGoogle Scholar
  61. 61.
    Holland, O., Medvedeva, N., McDowell-Hook, M., Abumaree, M., & Chamley, L. (2012). Syncytial nuclear aggregates, carriers of fetal alloantigens. Journal of Reproductive Immunology, 94, 118.CrossRefGoogle Scholar
  62. 62.
    Reyes-Moreno, C., Frenette, G., Boulanger, J., Lavergne, E., Govindan, M. V., & Koutsilieris, M. (1995). Mediation of glucocorticoid receptor function by transforming growth factor beta I expression in human PC-3 prostate cancer cells. The Prostate, 26, 260–269.PubMedCrossRefGoogle Scholar
  63. 63.
    Miller, A. H., Pariante, C. M., & Pearce, B. D. (1999). Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Advances in Experimental Medicine and Biology, 461, 107–116.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. H. Abumaree
    • 1
    • 2
    Email author
  • M. A. Al Jumah
    • 1
    • 2
  • B. Kalionis
    • 3
    • 4
  • D. Jawdat
    • 1
    • 2
  • A. Al Khaldi
    • 1
    • 2
  • F. M. Abomaray
    • 2
  • A. S. Fatani
    • 1
  • L. W. Chamley
    • 5
  • B. A. Knawy
    • 1
    • 2
  1. 1.College of MedicineKing Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health AffairsRiyadhSaudi Arabia
  2. 2.King Abdullah International Medical Research CenterKing Abdulaziz Medical City, National Guard Health AffairsRiyadhSaudi Arabia
  3. 3.Department of Obstetrics and GynaecologyUniversity of MelbourneParkvilleAustralia
  4. 4.Department of Perinatal Medicine Pregnancy Research CentreRoyal Women’s HospitalParkvilleAustralia
  5. 5.Department of Obstetrics & Gynaecology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations