Stem Cell Reviews and Reports

, Volume 9, Issue 6, pp 786–793 | Cite as

Nonlinear Regression Models for Determination of Nicotinamide Adenine Dinucleotide Content in Human Embryonic Stem Cells

  • Anton Salykin
  • Petr Kuzmic
  • Olga Kyrylenko
  • Jindra Musilova
  • Zdenek Glatz
  • Petr Dvorak
  • Sergiy Kyrylenko


Recent evidence suggests that energy metabolism contributes to molecular mechanisms controlling stem cell identity. For example, human embryonic stem cells (hESCs) receive their metabolic energy mostly via glycolysis rather than mitochondrial oxidative phosphorylation. This suggests a connection of metabolic homeostasis to stemness. Nicotinamide adenine dinucleotide (NAD) is an important cellular redox carrier and a cofactor for various metabolic pathways, including glycolysis. Therefore, accurate determination of NAD cellular levels and dynamics is of growing importance for understanding the physiology of stem cells. Conventional analytic methods for the determination of metabolite levels rely on linear calibration curves. However, in actual practice many two-enzyme cycling assays, such as the assay systems used in this work, display prominently nonlinear behavior. Here we present a diaphorase/lactate dehydrogenase NAD cycling assay optimized for hESCs, together with a mechanism-based, nonlinear regression models for the determination of NAD+, NADH, and total NAD. We also present experimental data on metabolic homeostasis of hESC under various physiological conditions. We show that NAD+/NADH ratio varies considerably with time in culture after routine change of medium, while the total NAD content undergoes relatively minor changes. In addition, we show that the NAD+/NADH ratio, as well as the total NAD levels, vary between stem cells and their differentiated counterparts. Importantly, the NAD+/NADH ratio was found to be substantially higher in hESC-derived fibroblasts versus hESCs. Overall, our nonlinear mathematical model is applicable to other enzymatic amplification systems.


NAD Human embryonic stem cells hESC-derived fibroblasts Enzymatic cycling Nonlinear regression Biochemical assay 



Alcohol dehydrogenase


Bovine serum albumin


Capillary electrophoresis


Human embryonic stem cells


Nicotinamide adenine dinucleotide


Phosphate buffer saline


Sodium polyoxotungstate


Relative fluorescence units

Supplementary material

12015_2013_9454_Fig7_ESM.jpg (25 kb)
Supplement 1

Figure S1 (JPEG 25 kb)

12015_2013_9454_MOESM1_ESM.tif (3.1 mb)
High resolution image (TIFF 3146 kb)
12015_2013_9454_MOESM2_ESM.doc (23 kb)
Supplement 2DynaFit Script 1 (DOC 23 kb)
12015_2013_9454_MOESM3_ESM.doc (23 kb)
Supplement 3DynaFit Script 2 (DOC 23 kb)


  1. 1.
    Folmes, C. D., Nelson, T. J., Dzeja, P. P., & Terzic, A. (2012). Energy metabolism plasticity enables stemness programs. Annals of the New York Academy of Sciences, 1254, 82–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Kondoh, H., Lleonart, M. E., Nakashima, Y., et al. (2007). A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxidants Redox Signal, 9, 293–299.CrossRefGoogle Scholar
  3. 3.
    Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11, 596–606.PubMedCrossRefGoogle Scholar
  4. 4.
    Araki, T., Sasaki, Y., & Milbrandt, J. (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 305, 1010–1013.PubMedCrossRefGoogle Scholar
  5. 5.
    Hinz, M., Katsilambros, N., Maier, V., Schatz, H., & Pfeiffer, E. F. (1973). Significance of streptozotocin induced nicotinamide-adenine-dinucleotide (NAD) degradation in mouse pancreatic islets. FEBS Letters, 30, 225–228.PubMedCrossRefGoogle Scholar
  6. 6.
    Benavente, C., Jacobson, M., & Jacobson, E. (2009). NAD in skin: therapeutic approaches for niacin. Current Pharmaceutical Design, 15, 29–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin, S.-J., & Guarente, L. (2003). Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Current Opinion in Cell Biology, 15, 241–246.PubMedCrossRefGoogle Scholar
  8. 8.
    Soane, L., Kahraman, S., Kristian, T., & Fiskum, G. (2007). Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. Journal of Neuroscience Research, 85, 3407–3415.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, J., Zhai, Q., Chen, Y., et al. (2005). A local mechanism mediates NAD-dependent protection of axon degeneration. The Journal of Cell Biology, 170, 349–355.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, H., Yang, T., Baur, J. A., et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell, 130, 1095–1107.PubMedCrossRefGoogle Scholar
  11. 11.
    Biason-Lauber, A., Böni-Schnetzler, M., Hubbard, B. P., et al. (2013). Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metabolism, 17, 448–455.PubMedCrossRefGoogle Scholar
  12. 12.
    Dilgin, D. G., Gligor, D., Gökçel, H. İ., Dursun, Z., & Dilgin, Y. (2010). Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode. Biosensors and Bioelectronics, 26, 411–417.PubMedCrossRefGoogle Scholar
  13. 13.
    Graeff, R., & Lee, H. C. (2002). A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochemical Journal, 367, 163–168.PubMedCrossRefGoogle Scholar
  14. 14.
    Emancipator, K., & Kroll, M. H. (1993). A quantitative measure of nonlinearity. Clinical Chemistry, 39, 766–772.PubMedGoogle Scholar
  15. 15.
    Lowry, O. H., Passonneau, J. V., Schulz, D. W., & Rock, M. K. (1961). The measurement of pyridine nucleotides by enzymatic cycling. Journal of Biological Chemistry, 236, 2746–2755.PubMedGoogle Scholar
  16. 16.
    Lowry, O. H. (1980). Amplification by enzymatic cycling. Molecular and Cellular Biochemistry, 32, 135–146.PubMedCrossRefGoogle Scholar
  17. 17.
    Dvorak, P., Dvorakova, D., Koskova, S., et al. (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells, 23, 1200–1211.PubMedCrossRefGoogle Scholar
  18. 18.
    Kunova, M., Matulka, K., Eiselleova, L. et al. (2013). Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Translational Medicine, 2, 246–254.Google Scholar
  19. 19.
    Krutá, M., Bálek, L., Hejnová, R., et al. (2012). Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells. Stem Cells, 31, 693–702.CrossRefGoogle Scholar
  20. 20.
    Bubis, M., & Zisapel, N. (1998). A role for NAD+ and cADP-ribose in melatonin signal transduction. Molecular and Cellular Endocrinology, 137, 59–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin, S. S., Manchester, J. K., & Gordon, J. I. (2001). Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. Journal of Biological Chemistry, 276, 36000–36007.PubMedCrossRefGoogle Scholar
  22. 22.
    Musilova, J., Sedlacek, V., Kucera, I., & Glatz, Z. (2009). Capillary zone electrophoresis with field enhanced sample stacking as a tool for targeted metabolome analysis of adenine nucleotides and coenzymes in Paracoccus denitrificans. Journal of Separation Science, 32, 2416–2420.PubMedCrossRefGoogle Scholar
  23. 23.
    Kuzmic, P. (1996). Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Analytical Biochemistry, 237, 260–273.PubMedCrossRefGoogle Scholar
  24. 24.
    Huber, P. J. (1981). Robust statistics. New York: John Wiley & Sons.CrossRefGoogle Scholar
  25. 25.
    Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley-Interscience.CrossRefGoogle Scholar
  26. 26.
    Hindmarsh, A. C. (1983). ODEPACK: A systematized collection of ODE solvers. In R. S. Stepleman (Ed.), Scientific computing (pp. 55–64). Amsterdam: North Holland.Google Scholar
  27. 27.
    Kuzmič P. (2009). DynaFit—A software package for enzymology. 467, 247–280.Google Scholar
  28. 28.
    Hasmann, M., & Schemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research, 63, 7436–7442.PubMedGoogle Scholar
  29. 29.
    Holen, K., Saltz, L. B., Hollywood, E., Burk, K., & Hanauske, A.-R. (2008). The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Investigational New Drugs, 26, 45–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Wellen, K. E., & Thompson, C. B. (2012). A two-way street: reciprocal regulation of metabolism and signalling. Nature Reviews Molecular Cell Biology, 13, 270–276.PubMedGoogle Scholar
  31. 31.
    Catomeris, P., & Thibert, R. J. (1988). Study and optimization of the resazurin/diaphorase system. Microchemical Journal, 38, 390–398.CrossRefGoogle Scholar
  32. 32.
    Xie, W., Xu, A., & Yeung, E. S. (2009). Determination of NAD(+) and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis. Analytical Chemistry, 81, 1280–1284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anton Salykin
    • 1
    • 2
  • Petr Kuzmic
    • 3
  • Olga Kyrylenko
    • 4
  • Jindra Musilova
    • 5
  • Zdenek Glatz
    • 5
  • Petr Dvorak
    • 1
    • 2
  • Sergiy Kyrylenko
    • 1
  1. 1.Department of Biology, Faculty of MedicineMasaryk UniversityBrno-BohuniceCzech Republic
  2. 2.International Clinical Research Center - Center of Biomolecular and Cellular EngineeringSt. Anne’s University Hospital BrnoBrnoCzech Republic
  3. 3.BioKin LtdWatertownUSA
  4. 4.A. I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
  5. 5.Department of Biochemistry, Faculty of Science and Central-European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic

Personalised recommendations