Advertisement

Stem Cell Reviews and Reports

, Volume 9, Issue 5, pp 721–730 | Cite as

Searching for Prostate Cancer Stem Cells: Markers and Methods

  • Benjamin Sharpe
  • Mark Beresford
  • Rebecca Bowen
  • John Mitchard
  • Andrew D. Chalmers
Article

Abstract

The cancer stem cell hypothesis postulates that a single stem-like cancer cell is able to produce all cancer cell types found in a tumor. These cells are also thought to be the causative agents of relapse following therapy. In order to confirm the importance of cancer stem cells in tumor formation and patient prognosis, their role in prostate cancer must be comprehensively studied. This review describes current methods and markers for isolating and characterizing prostate cancer stem cells, including assays for self-renewal, multipotency and resistance to therapy. In particular the advantages and limitations of these approaches are analyzed. The review will also examine novel methods for studying the lineage of cancer stem cells in vivo using transgenic mouse models. These lineage tracing approaches have significant advantages and, if a number of challenges can be addressed, offer great potential for understanding the significance of cancer stem cells in human prostate cancer.

Keywords

Biomarker Prostate cancer Cancer stem cell Methods Self-Renewal Lineage tracing 

Notes

Conflict of Interest

No conflicts of interest have been declared.

References

  1. 1.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRefGoogle Scholar
  2. 2.
    Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid-leukemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRefGoogle Scholar
  4. 4.
    Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMedCrossRefGoogle Scholar
  5. 5.
    Tirino, V., Desiderio, V., Paino, F., et al. (2013). Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. The FASEB Journal, 27(1), 13–24.CrossRefGoogle Scholar
  6. 6.
    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.PubMedCrossRefGoogle Scholar
  7. 7.
    van den Hoogen, C., van der Horst, G., Cheung, H., et al. (2010). High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Research, 70(12), 5163–5173.PubMedCrossRefGoogle Scholar
  8. 8.
    Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44(+)CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRefGoogle Scholar
  9. 9.
    Abdullah, L. N., & Chow, E. K.-H. (2013). Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2(1), 3–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Rich, J. N. (2007). Cancer stem cells in radiation resistance. Cancer Research, 67(19), 8980–8984.PubMedCrossRefGoogle Scholar
  11. 11.
    Kasper, S. (2008). Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Reviews, 4(3), 193–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, Y. Z., Hayward, S. W., Cao, M., Thayer, K. A., & Cunha, G. R. (2001). Cell differentiation lineage in the prostate. Differentiation, 68(4–5), 270–279.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, Z. A., Mitrofanova, A., Bergren, S. K., et al. (2013). Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nature Cell Biology, 15(3), 274–283.PubMedCrossRefGoogle Scholar
  14. 14.
    Choi, N., Zhang, B., Zhang, L., Ittmann, M., & Xin, L. (2012). Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell, 21(2), 253–265.PubMedCrossRefGoogle Scholar
  15. 15.
    Taylor, R. A., Toivanen, R., Frydenberg, M., et al. (2012). Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells, 30(6), 1087–1096.PubMedCrossRefGoogle Scholar
  16. 16.
    Lu, T.-L., Huang, Y.-F., You, L.-R., et al. (2013). Conditionally ablated pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. The American Journal of Pathology, 182(3), 975–991.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, L. L., Jiao, M., Li, L., et al. (2012). Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. Journal of Cancer Research and Clinical Oncology, 138(4), 675–686.PubMedCrossRefGoogle Scholar
  18. 18.
    Salvatori, L., Caporuscio, F., Verdina, A., et al. (2012). Cell-to-Cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors. PLoS One, 7(2), 14.CrossRefGoogle Scholar
  19. 19.
    Qin, J. C., Liu, X., Laffin, B., et al. (2012). The PSA(−/Io) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556–569.PubMedCrossRefGoogle Scholar
  20. 20.
    Rybak, A. P., He, L. Z., Kapoor, A., Cutz, J. C., & Tang, D. (2011). Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochimica Et Biophysica Acta-Molecular Cell Research, 1813(5), 683–694.CrossRefGoogle Scholar
  21. 21.
    Oh, S.-Y., Kang, H.J., Kim, Y.S., Kim, H., Lim, Y.C. (2013). CD44-negative cells in head and neck squamous carcinoma also have stem-cell like traits. European Journal of Cancer, 49(1).Google Scholar
  22. 22.
    Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMedCrossRefGoogle Scholar
  24. 24.
    Pfeiffer, M. J., Smit, F. P., Sedelaar, J. P. M., & Schalken, J. A. (2011). Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Molecular Medicine, 17(7–8), 657–664.PubMedGoogle Scholar
  25. 25.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J. J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2(+) and ABCG2(−) cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMedCrossRefGoogle Scholar
  26. 26.
    Castellon, E. A., Valenzuela, R., Lillo, J., et al. (2012). Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biological Research, 45(3), 297–305.PubMedCrossRefGoogle Scholar
  27. 27.
    Ben-Porath, I., Thomson, M. W., Carey, V. J., et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507.PubMedCrossRefGoogle Scholar
  28. 28.
    Gu, G. Y., Yuan, J. L., Wils, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67(10), 4807–4815.PubMedCrossRefGoogle Scholar
  29. 29.
    Mathieu, J., Zhang, Z., Zhou, W. Y., et al. (2011). HIF induces human embryonic stem cell markers in cancer cells. Cancer Research, 71(13), 4640–4652.PubMedCrossRefGoogle Scholar
  30. 30.
    Germann, M., Wetterwald, A., Guzman-Ramirez, N., et al. (2012). Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells, 30(6), 1076–1086.PubMedCrossRefGoogle Scholar
  31. 31.
    Kregel, S., Kiriluk, K. J., Rosen, A. M., et al. (2013). Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One, 8(1), e53701.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, J., Kim, H. K., Rho, J.-Y., Han, Y.-M., & Kim, J. (2006). The human OCT-4 isoforms differ in their ability to confer self-renewal. The Journal of Biological Chemistry, 281(44), 33554–33565.PubMedCrossRefGoogle Scholar
  33. 33.
    Das, S., Jena, S., & Levasseur, D. N. (2011). Alternative splicing produces nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. The Journal of Biological Chemistry, 286(49), 42690–42703.PubMedCrossRefGoogle Scholar
  34. 34.
    Booth, H. A. F., & Holland, P. W. H. (2004). Eleven daughters of NANOG. Genomics, 84(2), 229–238.PubMedCrossRefGoogle Scholar
  35. 35.
    Gupta, P. B., Fillmore, C. M., Jiang, G. Z., et al. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633–644.PubMedCrossRefGoogle Scholar
  36. 36.
    Chaffer, C. L., Brueckmann, I., Scheel, C., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–7955.PubMedCrossRefGoogle Scholar
  37. 37.
    Hellsten, R., Johansson, M., Dahlman, A., Sterner, O., & Bjartell, A. (2011). Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS One, 6(7), 9.CrossRefGoogle Scholar
  38. 38.
    Doherty, R. E., Haywood-Small, S. L., Sisley, K., & Cross, N. A. (2011). Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells. Biochemical and Biophysical Research Communications, 414(4), 801–807.PubMedCrossRefGoogle Scholar
  39. 39.
    Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central-nervous-system. Science, 255(5052), 1707–1710.PubMedCrossRefGoogle Scholar
  40. 40.
    Cho, Y. M., Kim, Y. S., Kang, M. J., Farrar, W. L., & Hurt, E. M. (2012). Long-term recovery of irradiated prostate cancer increases cancer stem cells. The Prostate, 72(16), 1746–1756.PubMedCrossRefGoogle Scholar
  41. 41.
    Miki, J., Furusato, B., Li, H. Z., et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Research, 67(7), 3153–3161.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajasekhar, V. K., Studer, L., Gerald, W., Socci, N. D., & Scher, H. I. (2011). Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappa B signalling. Nature Communications, 2, 13.CrossRefGoogle Scholar
  43. 43.
    Garraway, I. P., Sun, W., Tran, C. P., et al. (2010). Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. The Prostate, 70(5), 491–501.PubMedGoogle Scholar
  44. 44.
    Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122(5), 1849–1868.PubMedCrossRefGoogle Scholar
  45. 45.
    Albino, D., Longoni, N., Curti, L., et al. (2012). ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Research, 72(11), 2889–2900.PubMedCrossRefGoogle Scholar
  46. 46.
    Ma, Y. Y., Liang, D. M., Liu, J., et al. (2011). Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. PLoS One, 6(12), 13.Google Scholar
  47. 47.
    Duhagon, M. A., Hurt, E. M., Sotelo-Silveira, J. R., Zhang, X. H., & Farrar, W. L. (2010). Genomic profiling of tumor initiating prostatospheres. BMC Genomics, 11, 16.CrossRefGoogle Scholar
  48. 48.
    Kong, D. J., Banerjee, S., Ahmad, A., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One, 5(8), 14.CrossRefGoogle Scholar
  49. 49.
    Zhang, L. L., Li, L., Jiao, M., et al. (2012). Genistein inhibits the sternness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Letters, 323(1), 48–57.PubMedCrossRefGoogle Scholar
  50. 50.
    Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., & Tang, D. G. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: The CD44(+)alpha 2 beta 1(+) cell population is enriched in tumor-initiating cells. Cancer Research, 67(14), 6796–6805.PubMedCrossRefGoogle Scholar
  51. 51.
    Matilainen, H., Yu, X. W., Tang, C. W., Berridge, M. V., & McConnell, M. J. (2012). Sphere formation reverses the metastatic and cancer stem cell phenotype of the murine mammary tumour 4T1, independently of the putative cancer stem cell marker Sca-1. Cancer Letters, 323(1), 20–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8(5), 486–498.PubMedCrossRefGoogle Scholar
  53. 53.
    Li, T., Su, Y., Mei, Y. P., et al. (2010). ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Laboratory Investigation, 90(2), 234–244.PubMedCrossRefGoogle Scholar
  54. 54.
    Toivanen, R., Berman, D. M., Wang, H., et al. (2011). Brief report: a bioassay to identify primary human prostate cancer repopulating cells. Stem Cells, 29(8), 1310–1314.PubMedCrossRefGoogle Scholar
  55. 55.
    Azuma, M., Hirao, A., Takubo, K., Hamaguchi, I., Kitamura, T., & Suda, T. (2005). A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells. Biochemical and Biophysical Research Communications, 338(2), 1164–1170.PubMedCrossRefGoogle Scholar
  56. 56.
    Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P., & Witte, O. N. (2010). Identification of a cell of origin for human prostate cancer. Science, 329(5991), 568–571.PubMedCrossRefGoogle Scholar
  57. 57.
    Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tisty, T. D., & Cunha, G. R. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Research, 59(19), 5002–5011.PubMedGoogle Scholar
  58. 58.
    Zhang, G., Ma, L., Xie, Y. K., Miao, X. B., & Jin, C. (2012). Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity. Molecular Medicine Reports, 6(3), 519–524.PubMedGoogle Scholar
  59. 59.
    Foster, B. A., Gangavarapu, K. J., Mathew, G., et al. (2013). Human prostate side population cells demonstrate stem cell properties in recombination with urogenital sinus mesenchyme. PLoS One, 8(1), e55062–e55062.PubMedCrossRefGoogle Scholar
  60. 60.
    Alison, M. R., Guppy, N. J., Lim, S. M. L., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222(4), 335–344.PubMedCrossRefGoogle Scholar
  61. 61.
    Magni, M., Shammah, S., Schiro, R., Mellado, W., DallaFavera, R., & Gianni, A. M. (1996). Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood, 87(3), 1097–1103.PubMedGoogle Scholar
  62. 62.
    Carpentino, J. E., Hynes, M. J., Appelman, H. D., et al. (2009). Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Research, 69(20), 8208–8215.PubMedCrossRefGoogle Scholar
  63. 63.
    Lin, L., Fuchs, J., Li, C. L., Olson, V., Bekaii-Saab, T., & Lin, J. Y. (2011). STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochemical and Biophysical Research Communications, 416(3–4), 246–251.PubMedCrossRefGoogle Scholar
  64. 64.
    Domingo-Domenech, J., Vidal, S. J., Rodriguez-Bravo, V., et al. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell, 22(3), 373–388.PubMedCrossRefGoogle Scholar
  65. 65.
    Yin, H., & Glass, J. (2011). The phenotypic radiation resistance of CD44(+)/CD24(−or) (low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One, 6(9), 11.Google Scholar
  66. 66.
    Fu, Q. B., Quan, Y., Wang, W. K., et al. (2012). Response of cancer stem-like cells and non-stem cancer cells to proton and gamma-ray irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 286, 346–350.CrossRefGoogle Scholar
  67. 67.
    Bao, S. D., Wu, Q. L., McLendon, R. E., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.PubMedCrossRefGoogle Scholar
  68. 68.
    Schepers, A. G., Snippert, H. J., Stange, D. E., et al. (2012). Lineage tracing reveals Lgr5(+) stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang, X., Kruithof-de Julio, M., Economides, K. D., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–U461.PubMedCrossRefGoogle Scholar
  70. 70.
    Nawijn, M. C., Bergman, A. M., & van der Poel, H. G. (2008). Genetically engineered mouse models of prostate cancer. European Urology Supplements, 7(8), 566–575.CrossRefGoogle Scholar
  71. 71.
    Hensley, P. J., & Kyprianou, N. (2012). Modeling prostate cancer in mice: limitations and opportunities. Journal of Andrology, 33(2), 133–144.PubMedCrossRefGoogle Scholar
  72. 72.
    Tsurumi, C., Esser, N., Firat, E., et al. (2010). Non-Invasive in vivo imaging of tumor-associated CD133/prominin. PLoS One, 5(12), 10.CrossRefGoogle Scholar
  73. 73.
    Kim, J. B., Urban, K., Cochran, E., et al. (2010). Non-Invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One, 5(2), 9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biology and BiochemistryUniversity of BathBathUK
  2. 2.Department of OncologyRoyal United Hospital NHS TrustBathUK
  3. 3.Department of PathologyRoyal United Hospital NHS TrustBathUK

Personalised recommendations