Stem Cell Reviews and Reports

, Volume 9, Issue 5, pp 609–619 | Cite as

Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction



Ocular surface defects represent one of the most common causes of impaired vision or even blindness. For treatment, keratoplasty represents the first choice. However, if corneal defects are more extensive and associated with a limbal stem cell (LSC) deficiency, corneal transplantation is not a sufficient therapeutic procedure and only viable approach to treatment is the transplantation of LSCs. When the LSC deficiency is a bilateral disorder, autologous LSCs are not available. The use of allogeneic LSCs requires strong immunosuppression, which leads to side-effects, and the treatment is not always effective. The alternative and perspective approach to the treatment of severe ocular surface injuries and LSC deficiency is offered by the transplantation of autologous mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of the particular patient, grow well in vitro and can be transferred, using an appropriate scaffold, onto the damaged ocular surface. Here they exert beneficial effects by possible direct differentiation into corneal epithelial cells, by immunomodulatory effects and by the production of numerous trophic and growth factors. Recent experiments utilizing the therapeutic properties of MSCs in animal models with a mechanically or chemically injured ocular surface have yielded promising results and demonstrated significant corneal regeneration, improved corneal transparency and a rapid healing process associated with the restoration of vision. The use of autologous MSCs thus represents a promising therapeutic approach and offers hope for patients with severe ocular surface injuries and LSC deficiency.


Mesenchymal stem cells Limbal stem cells Ocular surface injuries Nanofiber scaffolds Immunosuppression Cornea reconstruction 


  1. 1.
    Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: A global perspective. Bulletin of the World Health Organization, 79, 214–221.PubMedGoogle Scholar
  2. 2.
    Forrester, J. V., & Kuffova, L. (2004). Corneal transplantation. London: Imperial College Press.Google Scholar
  3. 3.
    Al-Mohaimeed, M. M. (2013). Penetrating keratoplasty for keratoconus: Visual and graft survival outcomes. International Journal of Health Sciences (Qassim), 7, 67–74.Google Scholar
  4. 4.
    Huang, A. J., & Tseng, S. C. (1991). Corneal epithelial wound healing in the absence of limbal epithelium. Investigative Ophthalmology and Visual Science, 32, 96–105.PubMedGoogle Scholar
  5. 5.
    Pellegrini, G., Rama, P., Mavilio, F., & De Luca, M. (2009). Epithelial stem cells in corneal regeneration and epidermal gene therapy. The Journal of Pathology, 217, 217–228.PubMedGoogle Scholar
  6. 6.
    Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Surveys in Ophthalmology, 44, 415–425.Google Scholar
  7. 7.
    Schlötzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Experimental Eye Research, 81, 247–264.PubMedGoogle Scholar
  8. 8.
    Nieto-Miguel, T., Calonge, M., de la Mata, A., López-Paniagua, M., Galindo, S., de la Paz, M. F., et al. (2011). A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium. Molecular Vision, 17, 2102–2117.PubMedGoogle Scholar
  9. 9.
    Takács, L., Tóth, E., Losonczy, G., Szanto, A., Bähr-Ivacevic, T., Benes, V., et al. (2011). Differentially expressed genes associated with human limbal epithelial phenotypes: new molecules that potentially facilitate selection of stem cell-enriched populations. Investigative Ophthalmology and Visual Science, 52, 1252–1260.PubMedGoogle Scholar
  10. 10.
    Notara, M., Alatza, A., Gilfillan, J., Harris, A. R., Levis, H. J., Schrader, S., et al. (2010). In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90, 188–195.PubMedGoogle Scholar
  11. 11.
    Tseng, S. C. (1996). Regulation and clinical implication of corneal epithelial stem cells. Molecular Biology Reports, 23, 47–58.PubMedGoogle Scholar
  12. 12.
    Lehrer, M. S., Sun, T. T., & Lavker, R. M. (1998). Strategies of epithelial repair: Modulation of stem cell and transit amplifying cell proliferation. Journal of Cell Science, 111, 2867–2875.PubMedGoogle Scholar
  13. 13.
    Majo, F., Rochat, A., Nicolas, M., Jaoudé, G. A., & Barrandon, Y. (2008). Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 456, 250–254.PubMedGoogle Scholar
  14. 14.
    Chang, C.-Y., Green, C. R., McGhee, C. N. J., & Sherwin, T. (2008). Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Investigative Ophthalmology and Visual Science, 49, 5279–5286.PubMedGoogle Scholar
  15. 15.
    Dua, H. S., Miri, A., Alomar, T., Yeung, A. M., & Said, D. G. (2009). The role of limbal stem cells in corneal epithelial maintenance: Testing the dogma. Ophthalmology, 116, 856–863.PubMedGoogle Scholar
  16. 16.
    Echevarria, T. J., & Di Girolamo, N. (2011). Tissue-regenerating, vision-restoring corneal epithelial stem cells. Stem Cell Reviews, 7, 256–268.PubMedGoogle Scholar
  17. 17.
    Tan, D. J., Ficker, L. A., & Buckley, R. J. (1996). Limbal transplantation. Ophthalmology, 103, 29–36.PubMedGoogle Scholar
  18. 18.
    Dua, H. S., & Azuara-Blanco, A. (1999). Allo-limbal transplantation in patients with limbal stem cell deficiency. British Journal of Ophthalmology, 83, 414–419.PubMedGoogle Scholar
  19. 19.
    Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96, 709–722.PubMedGoogle Scholar
  20. 20.
    Tsubota, K., Satake, Y., Kaido, M., Shinozaki, N., Shimmura, S., Bissen-Miyajima, H., et al. (1999). Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. The New England Journal of Medicine, 340, 1697–1703.PubMedGoogle Scholar
  21. 21.
    Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349, 990–993.PubMedGoogle Scholar
  22. 22.
    Daya, S. M., Bell, R. W., Habib, N. E., Powel-Richards, A., & Dua, H. S. (2000). Clinic and pathologic findings in human keratolimbal allograft rejection. Cornea, 19, 443–450.PubMedGoogle Scholar
  23. 23.
    Cauchi, P. A., Ang, G. S., Azuara-Blanco, A., & Burr, J. M. (2008). A systematic literature review of surgical interventions for limbal stem cell deficiency in humans. American Journal of Ophthalmology, 146, 251–259.PubMedGoogle Scholar
  24. 24.
    Mills, R. A., Coster, D. J., & Williams, K. A. (2002). Effect of immunosuppression on outcome measures in a model of rat limbal transplantation. Investigative Ophthalmology and Visual Sciences, 43, 647–655.Google Scholar
  25. 25.
    Lencova, A., Pokorna, K., Zajicova, A., Krulova, M., Filipec, M., & Holan, V. (2011). Graft survival and cytokine production in the experimental mouse model of limbal transplantation. Transplant Immunology, 24, 189–194.PubMedGoogle Scholar
  26. 26.
    Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363, 147–155.PubMedGoogle Scholar
  27. 27.
    Marchini, G., Pedrotti, E., Pedrotti, M., Barbaro, V., Di Iorio, E., Ferrari, S., et al. (2011). Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clinical and Experimental Ophthalmology, 40, 255–267.PubMedGoogle Scholar
  28. 28.
    Basu, S., Ali, H., & Sangwan, V. S. (2012). Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. American Journal of Ophthalmology, 153, 643–650.PubMedGoogle Scholar
  29. 29.
    Shortt, A. J., Secker, G. A., Notara, M. D., Limb, G. A., Khaw, P. T., Tuft, S. J., et al. (2007). Transplantation of ex vivo cultured limbal epithelial stem cells: A review of techniques and clinical results. Survey of Ophthalmology, 52, 483–502.PubMedGoogle Scholar
  30. 30.
    Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. In H. Brewitt (Ed.), Research projects in dry eye syndrome, vol. 45 (pp. 57–70). Basel: Developmental Ophthalmology.Google Scholar
  31. 31.
    Nakamura, T., & Kinoshita, S. (2003). Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea, 22, S75–S80.PubMedGoogle Scholar
  32. 32.
    Liu, J., Sheha, H., Fu, Y., Giegengack, M., & Tseng, S. C. (2011). Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. American Journal of Ophthalmollogy, 152, 739–747.Google Scholar
  33. 33.
    Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. British Journal of Ophthalmology, 88, 1280–1284.PubMedGoogle Scholar
  34. 34.
    Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351, 1187–1196.PubMedGoogle Scholar
  35. 35.
    Blazejewska, E. A., Schlotzer-Schrehardt, U., Zenkel, M., Bachmann, B., Chankiewitz, E., Jacobi, C., et al. (2009). Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells, 27, 642–652.PubMedGoogle Scholar
  36. 36.
    Yang, X., Moldovan, N. I., Zhao, Q., Mi, S., Zhou, Z., Chen, D., et al. (2008). Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Molecular Vision, 14, 1064–1070.PubMedGoogle Scholar
  37. 37.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25, 2896–2902.PubMedGoogle Scholar
  38. 38.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedGoogle Scholar
  39. 39.
    Gu, S., Xing, C., Han, J., Tso, M. O. M., & Hong, J. (2009). Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Molecular Vision, 15, 99–107.PubMedGoogle Scholar
  40. 40.
    Jiang, T. S., Cai, L., Ji, W. Y., Hui, Y. N., Wang, Y. S., Hu, D., et al. (2010). Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Molecular Vision, 16, 1304–1316.PubMedGoogle Scholar
  41. 41.
    Martinez-Conesa, E. M., Espel, E., Reina, M., & Casaroli-Marano, R. P. (2012). Characterization of ocular surface epithelial and progenitor cell markers in human adipose stromal cells derived from lipoaspirates. Investigative Ophthalmology and Visual Sciences, 53, 513–520.Google Scholar
  42. 42.
    Agorogiannis, G. I., Alexaki, V. I., Castana, O., & Kymionis, G. D. (2012). Topical application of autologous adipose-derived mesenchymal stem cells (MSCs) for persistent sterile corneal epitelial defect. Graefe´s Archives of Clinical and Experimental Ophthalmology, 250, 455–457.Google Scholar
  43. 43.
    Lan, Y., Kodati, S., Lee, H. S., Omoto, M., Jin, Y., & Chauhan, S. K. (2012). Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology and Visual Sciences, 53, 3638–3644.Google Scholar
  44. 44.
    Oh, J. Y., Roddy, G. W., Choi, H., Lee, R. H., Ylöstalo, J. H., Rosa, R. H., Jr., et al. (2010). Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences USA, 107, 16875–16880.Google Scholar
  45. 45.
    Yao, L., Li, Z. R., Su, W. R., Li, Y. P., Lin, M. L., Zhang, W. X., et al. (2012). Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One, 7, e30842.PubMedGoogle Scholar
  46. 46.
    Roddy, G. W., Oh, J. Y., Lee, R. H., Bartosh, T. J., Ylostalo, J., Coble, K., et al. (2011). Action at a distance: Systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells, 29, 1572–1579.PubMedGoogle Scholar
  47. 47.
    Casaroli-Marano, R. P., Nieto-Nicolau, N., & Martínez-Conesa, E. M. (2012). Progenitor cells for ocular surface regenerative therapy. Ophthalmic Research, 49, 115–121.PubMedGoogle Scholar
  48. 48.
    Otto, W. R., & Wright, N. A. (2011). Mesenchymal stem cells: From experiment to clinic. Fibrogenesis Tissue Repair, 4, 20.PubMedGoogle Scholar
  49. 49.
    Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.PubMedGoogle Scholar
  50. 50.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.PubMedGoogle Scholar
  51. 51.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedGoogle Scholar
  52. 52.
    Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 42–48.PubMedGoogle Scholar
  53. 53.
    Le Blanc, K., & Ringdén, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262, 509–525.PubMedGoogle Scholar
  54. 54.
    Ghannnam, S., Pene, J., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185, 302–312.Google Scholar
  55. 55.
    Svobodova, E., Krulova, M., Zajicova, A., Prochazkova, J., Trosan, P., & Holan, V. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T cells into anti-inflammatory regulatory T cell and proinflammatory helper T-cell 17 population. Stem Cells and Development, 21, 901–910.PubMedGoogle Scholar
  56. 56.
    Xu, G., Zhang, L., Ren, G., Yuan, Z., Zhang, Y., Zhao, R. C., et al. (2007). Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Research, 17, 240–248.PubMedGoogle Scholar
  57. 57.
    Le Blanc, K., Rasmusson, I., Sundberg, B., Götherströmm, C., Hassan, M., Uzumel, M., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.PubMedGoogle Scholar
  58. 58.
    Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.PubMedGoogle Scholar
  59. 59.
    Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.PubMedGoogle Scholar
  60. 60.
    Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.PubMedGoogle Scholar
  61. 61.
    Augello, A., Tasso, R., Negrini, S. M., Cancedda, R., & Pennesi, G. (2007). Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis and Rheumatism, 56, 1175–1186.PubMedGoogle Scholar
  62. 62.
    Jia, Z., Jiao, C., Zhao, S., Li, X., Ren, X., Zhang, L., et al. (2012). Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Experimental Eye Research, 102, 44–49.PubMedGoogle Scholar
  63. 63.
    Oh, J. Y., Lee, R. H., Yu, J. M., Ko, J. H., Lee, H. J., Ko, A. Y., et al. (2012). Intravenous mesenchymal stem cells prevent rejection of allogeneic corneal transplants by aborting the early inflammatory response. Molecular Therapy, 20, 2143–2152.PubMedGoogle Scholar
  64. 64.
    Holan, V., Pokorna, K., Prochazkova, J., Krulova, M., & Zajicova, A. (2010). Immunoregulatory properties of mouse limbal stem cells. Journal of Immunology, 184, 2124–2129.Google Scholar
  65. 65.
    Bian, F., Qi, H., Ma, P., Zhang, L., Yoon, K. C., Pflugfelder, S. C., et al. (2010). An immunoprotective privilege of corneal epithelial stem cells against Th17 inflammatory stress by producing glial cell-derived neurotrophic factor. Stem Cells, 28, 2172–2181.PubMedGoogle Scholar
  66. 66.
    Garfias, Y., Nieves-Hernandez, J., Garcia-Mejia, M., Estrada-Reyes, C., & Jimenez-Martinez, M. C. (2012). Stem cells isolated from the human stromal limbus possess immunosuppressant properties. Molecular Vision, 18, 2087–2095.PubMedGoogle Scholar
  67. 67.
    Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.PubMedGoogle Scholar
  68. 68.
    Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.Google Scholar
  69. 69.
    Păunescu, V., Deak, E., Herman, D., Siska, I. R., Tănasie, G., Bunu, C., et al. (2007). In vitro differentiation of human mesenchymal stem cells to epithelial lineage. Journal of Cellullar and Molecular Medicine, 11, 502–508.Google Scholar
  70. 70.
    Arnalich-Montiel, F., Pastor, S., Blazquez-Martinez, A., Fernandez-Delgado, J., Nistal, M., Alio, J. L., et al. (2008). Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells, 26, 570–579.PubMedGoogle Scholar
  71. 71.
    Reza, H. M., Ng, B. Y., Gimeno, F. L., Phan, T. T., & Ang, L. P. (2011). Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Reviews, 7, 935–947.PubMedGoogle Scholar
  72. 72.
    Bieback, K., & Brinkmann, I. (2010). Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World Journal of Stem Cells, 2, 81–92.PubMedGoogle Scholar
  73. 73.
    Ahmad, S., Stewart, R., Yung, S., Kolli, S., Armstrong, L., Stojkovic, M., et al. (2007). Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells, 25, 45–55.Google Scholar
  74. 74.
    Notara, M., Hernandez, D., Mason, C., & Daniels, J. T. (2012). Characterization of the phenotype and functionality of corneal epithelial cells derived from mouse embryonic stem cells. Regenerative Medicine, 7, 167–178.PubMedGoogle Scholar
  75. 75.
    Gomes, J. A., Geraldes Monteiro, B., Melo, G. B., Smith, R. L., Pereira, C., da Silva, M., Lizier, N. F., et al. (2010). Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology and Visual Science, 51, 1408–1414.PubMedGoogle Scholar
  76. 76.
    Monteiro, B. G., Serafim, R. C., Melo, G. B., Silva, M. C., Lizier, N. F., Maranduba, C. M., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Proliferation, 42, 587–594.PubMedGoogle Scholar
  77. 77.
    Kotton, D. N., Ma, B. Y., Cardoso, W. V., Sanderson, E. A., Summer, R. S., Williams, M. C., et al. (2001). Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 128, 5181–5188.PubMedGoogle Scholar
  78. 78.
    Janes, S. M., Lowel, S., & Hutter, C. (2002). Epidermal stem cells. The Journal of Pathology, 197, 479–491.PubMedGoogle Scholar
  79. 79.
    Wang, G., Bunnell, B. A., Painter, R. G., Quiniones, B. C., Tom, S., Lanson, N. A., Jr., et al. (2005). Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proceedings of National Academy of Sciences USA, 102, 186–191.Google Scholar
  80. 80.
    Trosan, P., Svobodova, E., Chudickova, M., Krulova, M., Zajicova, A., & Holan, V. (2012). The key role of insulin-like growth factor I in limbal stem cell differentiation and corneal wound healing process. Stem Cells and Development, 21, 3341–3350.PubMedGoogle Scholar
  81. 81.
    Liu, H., Zhang, J., Liu, C. Y., Hayashi, Y., & Kao, W. W. (2012). Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. Journal of Cellular and Molecular Medicine, 16, 1114–1124.PubMedGoogle Scholar
  82. 82.
    Hou, G. H., Ye, N., Wu, J., Xu, J. T., Shi, W. J., Chen, Y., et al. (2010). Preliminary study of human mesenchymal stem cell differentiation into epithelial-like cells. Zhonghua Yan Ke Za Zhi, 46, 719–724.PubMedGoogle Scholar
  83. 83.
    Ma, Y., Xi, Y., Xiao, Z., Yang, W., Zhang, C., Song, E., et al. (2006). Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells, 24, 315–321.PubMedGoogle Scholar
  84. 84.
    Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R., et al. (2008). The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells, 26, 1047–1055.PubMedGoogle Scholar
  85. 85.
    Reinshagen, H., Auw-Haedrich, C., Sorg, R. V., Boehringer, D., Eberwein, P., Schwartzkopff, J., et al. (2011). Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmologica, 89, 741–748.PubMedGoogle Scholar
  86. 86.
    Zajicova, A., Pokorna, K., Lencova, A., Krulova, M., Svobodova, E., Kubinova, S., et al. (2010). Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplantation, 19, 1281–1290.PubMedGoogle Scholar
  87. 87.
    Liu, H., Zhang, J., Liu, C. Y., Wang, I. J., Sieber, M., Chang, J., et al. (2010). Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One, 5(5), e10707.PubMedGoogle Scholar
  88. 88.
    Sykova, E., Jendelova, P., Urdzikova, L., Lesny, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels – two strategies for spinal cord injury repair. Cellular and Molecular Neurobiolology, 25, 1113–1129.Google Scholar
  89. 89.
    Dubios, G., Segers, V. F., Bellamy, V., Sabbah, L., Peyrard, S., Bruneval, P., et al. (2008). Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. Journal of Biomedical Materials Research - Part B, 87, 222–228.Google Scholar
  90. 90.
    Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72, 1478–1485.PubMedGoogle Scholar
  91. 91.
    Schwab, I. R., Johnson, N. T., & Harkim, D. G. (2006). Inherent risks associated with manufacture of bioengineered ocular surface tissue. Archives of Ophthalmology, 124, 1734–1740.PubMedGoogle Scholar
  92. 92.
    Shimazaki, J., Aiba, M., Goto, E., Kato, N., Shimmura, S., & Tsubota, K. (2002). Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology, 109, 1285–1290.PubMedGoogle Scholar
  93. 93.
    Di Girolamo, N., Chui, J., Wakefield, D., & Coroneo, M. T. (2007). Cultured human ocular surface epithelium on therapeutic contact lenses. British Journal of Ophthalmology, 91, 459–464.PubMedGoogle Scholar
  94. 94.
    Holan, V., Chudickova, M., Trosan, P., Svobodova, E., Krulova, M., Kubinova, S., et al. (2011). Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. Journal of Controlled Release, 156, 406–412.PubMedGoogle Scholar
  95. 95.
    Holan, V., Javorkova, E., Trosan, P. (2013). The growth and delivery of mesenchymal and limbal stem cells using copolymer polyamide 6/12 nanofiber scaffolds. In B. Wright and C. J. Connon (Eds.), Corneal Regenerative Medicine, in press, Springer Press.Google Scholar
  96. 96.
    Xing, X., Wang, Y., & Li, B. (2008). Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Optics Express, 16, 10815–10822.PubMedGoogle Scholar
  97. 97.
    Niece, K. L., Hartgerink, J. D., Donners, J. J., & Stupp, S. I. (2003). Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society, 125, 7146–7147.PubMedGoogle Scholar
  98. 98.
    Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishma, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composite Sciences and Technlogy, 63, 2223–2253.Google Scholar
  99. 99.
    Martins, A., & Reis, R. L. (2008). Electrospinning processing technique for tissue engineering scaffolding. International Materials Reviews, 53, 257–274.Google Scholar
  100. 100.
    Nur-E-Kamal, A., Ahmed, I., Kamal, J., Schindler, M., & Meiners, S. (2006). Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells, 24, 426–433.PubMedGoogle Scholar
  101. 101.
    Shih, Y. R., Chen, C. N., Tsai, S. W., Wang, Y. J., & Lee, O. K. (2006). Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 24, 2391–2397.PubMedGoogle Scholar
  102. 102.
    Xin, X., Hussain, M., & Mao, J. J. (2007). Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials, 28, 316–325.PubMedGoogle Scholar
  103. 103.
    Sirc, J., Kubinova, S., Hobzova, R., Stranska, D., Kozlik, P., Bosakova, Z., et al. (2012). Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal of Nanomedicine, 7, 5315–5325.PubMedGoogle Scholar
  104. 104.
    Merrell, J. G., McLaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., & Nair, L. S. (2009). Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology and Physiology, 36, 1149–1156.PubMedGoogle Scholar
  105. 105.
    Wang, F., Li, Z., Tamama, K., Sen, C. K., & Guan, J. (2009). Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules, 10, 2609–2618.PubMedGoogle Scholar
  106. 106.
    Wang, H. S., Fu, G. D., & Li, X. S. (2009). Functional polymeric nanofibers from electrospinning. Recent Patents on Nanotechnology, 3, 21–31.PubMedGoogle Scholar
  107. 107.
    Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8, 375–392.PubMedGoogle Scholar
  108. 108.
    Hu, N., Zhang, Y. Y., Gu, H. W., & Guan, H. J. (2012). Effects of bone marrow mesenchymal stem cells on cell proliferation and growth factor expression of limbal epithelial cells in vitro. Ophthalmic Research, 48, 82–88.PubMedGoogle Scholar
  109. 109.
    Zhang, J., Huang, C., Feng, Y., Li, Y., & Wang, W. (2012). Comparison of beneficial factors for corneal wound-healing of rat mesenchymal stem cells and corneal limbal stem cells on the xenogeneic acellular corneal matrix in vitro. Molecular Vision, 18, 161–173.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Transplantation ImmunologyInstitute of Experimental Medicine, Academy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations