Advertisement

Stem Cell Reviews and Reports

, Volume 9, Issue 2, pp 190–209 | Cite as

The Cellular Memory Disc of Reprogrammed Cells

  • Seyed Hadi AnjamroozEmail author
Article

Abstract

The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient’s own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM), which arises genetically, epigenetically and non-genetically, respectively, and affect cellular behaviours.

Keywords

Cellular memory Cellular reprogramming Stem cell Induced pluripotent stem cell 

Notes

Acknowledgments

The author is grateful to Prof. Mansoureh Movahedin of Tarbiat Modarres University for her kind encouragement of this work and her useful comments on the manuscript.

Conflict of interest statement

The author indicates no potential conflicts of interest.

References

  1. 1.
    Gaspar-Maia, A., Alajem, A., Meshorer, E., & Ramalho-Santos, M. (2011). Open chromatin in pluripotency and reprogramming. Nature Reviews Molecular Cell Biology, 12(1), 36–47.PubMedGoogle Scholar
  2. 2.
    Nagy, A., Gócza, E., Diaz, E. M., Prideaux, V. R., Iványi, E., Markkula, M., et al. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development, 110(3), 815–821.PubMedGoogle Scholar
  3. 3.
    Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149–184.PubMedGoogle Scholar
  4. 4.
    Cibelli, J. B., Grant, K. A., Chapman, K. B., Cunniff, K., Worst, T., Green, H. L., et al. (2002). Parthenogenetic stem cells in nonhuman primates. Science, 295(5556), 819.PubMedGoogle Scholar
  5. 5.
    Gurdon, J. B., & Melton, D. A. (2008). Nuclear reprogramming in cells. Science, 322(5909), 1811–1815.PubMedGoogle Scholar
  6. 6.
    Byrne, J. A., Pedersen, D. A., Clepper, L. L., Nelson, M., Sanger, W. G., Gokhale, S., et al. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 450(7169), 497–502.PubMedGoogle Scholar
  7. 7.
    Solter, D. (2006). From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Reviews Genetics, 7(4), 319–327.PubMedGoogle Scholar
  8. 8.
    Zwaka, T. P., & Thomson, J. A. (2005). A germ cell origin of embryonic stem cells? Development, 132(2), 227–233.PubMedGoogle Scholar
  9. 9.
    Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309(5739), 1369–1373.PubMedGoogle Scholar
  10. 10.
    Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132(4), 567–582.PubMedGoogle Scholar
  11. 11.
    Tosh, D., & Slack, J. M. (2002). How cells change their phenotype. Nature Reviews Molecular Cell Biology, 3(3), 187–194.PubMedGoogle Scholar
  12. 12.
    Kagias, K., Ahier, A., Fischer, N., & Jarriault, S. (2012). Members of the NODE (Nanog and Oct4-associated deacetylase) complex and SOX-2 promote the initiation of a natural cellular reprogramming event in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6596–6601.PubMedGoogle Scholar
  13. 13.
    McKay, R. (2000). Stem cells–hype and hope. Nature, 406(6794), 361–364.PubMedGoogle Scholar
  14. 14.
    Gurdon, J. B., Byrne, J. A., & Simonsson, S. (2003). Nuclear reprogramming and stem cell creation. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11819–11822.PubMedGoogle Scholar
  15. 15.
    Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.PubMedGoogle Scholar
  16. 16.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.PubMedGoogle Scholar
  17. 17.
    Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., et al. (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384), 216–220.PubMedGoogle Scholar
  18. 18.
    Lujan, E., Chanda, S., Ahlenius, H., Südhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2527–2532.PubMedGoogle Scholar
  19. 19.
    Ng, R. K., & Gurdon, J. B. (2008). Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biology, 10(1), 102–109.PubMedGoogle Scholar
  20. 20.
    Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.PubMedGoogle Scholar
  21. 21.
    Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855.PubMedGoogle Scholar
  22. 22.
    Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215.PubMedGoogle Scholar
  23. 23.
    Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6(2), 108–118.PubMedGoogle Scholar
  24. 24.
    Hochedlinger, K., & Jaenisch, R. (2007). On the cloning of animals from terminally differentiated cells. Nature Genetics, 39(2), 136–137.PubMedGoogle Scholar
  25. 25.
    Meissner, A., & Jaenisch, R. (2006). Mammalian nuclear transfer. Developmental Dynamics, 235(9), 2460–2469.PubMedGoogle Scholar
  26. 26.
    Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.PubMedGoogle Scholar
  27. 27.
    Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 12(4), 253–265.PubMedGoogle Scholar
  28. 28.
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455(7213), 627–632.PubMedGoogle Scholar
  29. 29.
    Gurdon, J. B. (2006). From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annual Review of Cell and Developmental Biology, 22, 1–22.PubMedGoogle Scholar
  30. 30.
    Lluis, F., Pedone, E., Pepe, S., & Cosma, M. P. (2010). The Wnt/β-catenin signaling pathway tips the balance between apoptosis and reprograming of cell fusion hybrids. Stem Cells, 28(11), 1940–1949.PubMedGoogle Scholar
  31. 31.
    Breiling, A., Turner, B. M., Bianchi, M. E., & Orlando, V. (2001). General transcription factors bind promoters repressed by Polycomb group proteins. Nature, 412(6847), 651–655.PubMedGoogle Scholar
  32. 32.
    Dodd, I. B., Micheelsen, M. A., Sneppen, K., & Thon, G. (2007). Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell, 129(4), 813–822.PubMedGoogle Scholar
  33. 33.
    Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thåström, A., Field, Y., Moore, I. K., et al. (2006). A genomic code for nucleosome positioning. Nature, 442(7104), 772–778.PubMedGoogle Scholar
  34. 34.
    van Oosten, A. L., Costa, Y., Smith, A., & Silva, J. C. (2012). JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nature Communications, 3, 817.PubMedGoogle Scholar
  35. 35.
    Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.PubMedGoogle Scholar
  36. 36.
    Kim, J., Efe, J. A., Zhu, S., Talantova, M., Yuan, X., Wang, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7838–7843.PubMedGoogle Scholar
  37. 37.
    Stadtfeld, M., Apostolou, E., Ferrari, F., Choi, J., Walsh, R. M., Chen, T., et al. (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nature Genetics, 44(4), 398–405.PubMedGoogle Scholar
  38. 38.
    Esteban, M. A., & Pei, D. (2012). Vitamin C improves the quality of somatic cell reprogramming. Nature Genetics, 44(4), 366–367.PubMedGoogle Scholar
  39. 39.
    Anjamrooz, S. H. (2011). Trinity is a numerical model of the holographic universe. Int J Phys Sci., 6(2), 175–181.Google Scholar
  40. 40.
    Anjamrooz, S. H., McConnell, D. J., & Azari, H. (2011). The cellular universe: a new cosmological model based on the holographic principle. Int J Phys Sci., 6(9), 2175–2183.Google Scholar
  41. 41.
    Sheppard, T. L., Ordoukhanian, P., & Joyce, G. F. (2000). A DNA enzyme with N-glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7802–7807.PubMedGoogle Scholar
  42. 42.
    Hyden, H., & Egyhazi, E. (1962). Nuclear RNA changes of nerve cells during a learning experiment in rats. Proceedings of the National Academy of Sciences of the United States of America, 48, 1366–1373.PubMedGoogle Scholar
  43. 43.
    Babich, F. R., Jacobson, A. L., Bubash, S., & Jacobson, A. (1965). Transfer of a response to naive rats by injection of ribonucleic acid extracted from trained rats. Science, 149(3684), 656–657.PubMedGoogle Scholar
  44. 44.
    Jacobson, A. L., Babich, F. R., Bubash, S., & Jacobson, A. (1965). Differential-approach tendencies produced by injection of RNA from trained rats. Science, 150(3696), 636–637.PubMedGoogle Scholar
  45. 45.
    McConnell, J. V., Jacobson, A. L., & Kimble, D. P. (1959). The effects of regeneration upon retention of a conditioned response in the planarian. Journal of Comparative and Physiological Psychology, 52(1), 1–5.PubMedGoogle Scholar
  46. 46.
    Corning, W. C., & John, E. R. (1961). Effect of ribonuclease on retention of conditioned response in regenerated planarians. Science, 134(3487), 1363–1365.PubMedGoogle Scholar
  47. 47.
    Niu, M. C. (1958). Thymus ribonucleic acid and embryonic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 44(12), 1264–1274.PubMedGoogle Scholar
  48. 48.
    Fishman, M., Hammerstrom, R. A., & Bond, V. P. (1963). In vitro transfer of macrophage RNA to lymph node cells. Nature, 198, 549–551.PubMedGoogle Scholar
  49. 49.
    Brewer, R. G., & Hahn, E. L. (1984). Atomic memory. Scientific American, 251, 50–57.Google Scholar
  50. 50.
    Yoshikawa, Y., Nakayama, K., Torii, Y., & Kuga, T. (2007). Holographic storage of multiple coherence gratings in a Bose-Einstein condensate. Physical Review Letters, 99(22), 220407.PubMedGoogle Scholar
  51. 51.
    Shipway, A. N., Katz, E., & Willner, I. (2001). Molecular memory and processing devices in solution and on surfaces. Struct. Bonding., 99, 237–281.Google Scholar
  52. 52.
    Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 133(3), 853–861.PubMedGoogle Scholar
  53. 53.
    Shinde, U. P., Liu, J. J., & Inouye, M. (1997). Protein memory through altered folding mediated by intramolecular chaperones. Nature, 389(6650), 520–522.PubMedGoogle Scholar
  54. 54.
    Bentolila, S. (2005). “Live memory” of the cell, the other hereditary memory of living systems. Biosystems, 80(3), 251–261.PubMedGoogle Scholar
  55. 55.
    Fesenko, E. E., Geletyuk, V. I., Kazachenko, V. N., & Chemeris, N. K. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366(1), 49–52.PubMedGoogle Scholar
  56. 56.
    Maddox, J. (1988). When to believe the unbelievable. Nature, 333, 816–818.Google Scholar
  57. 57.
    Samal, S., & Geckeler, K. E. (2001). Unexpected solute aggregation in water on dilution. Chemical Communications (Cambridge, England), 7(21), 2224–2225.Google Scholar
  58. 58.
    Del Giudice, E., Preparata, G., & Vitiello, G. (1988). Water as a free electric dipole laser. Physical Review Letters, 61(9), 1085–1088.PubMedGoogle Scholar
  59. 59.
    Ahn, J., Weinacht, T. C., & Bucksbaum, P. H. (2000). Information storage and retrieval through quantum phase. Science, 287(5452), 463–465.PubMedGoogle Scholar
  60. 60.
    Davenas, E., Beauvais, F., Amara, J., Oberbaum, M., Robinzon, B., Miadonna, A., et al. (1988). Human basophil degranulation triggered by very dilute antiserum against IgE. Nature, 333(6176), 816–818.PubMedGoogle Scholar
  61. 61.
    Farhadi, A., Forsyth, C., Banan, A., Shaikh, M., Engen, P., Fields, J. Z., et al. (2007). Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry, 71(2), 142–148.PubMedGoogle Scholar
  62. 62.
    Gabor, D. (1968). Holographic model of temporal recall. Nature, 217(5128), 584.PubMedGoogle Scholar
  63. 63.
    Greguss, P. (1968). Bioholography—a new model of information processing. Nature, 219(5153), 482.PubMedGoogle Scholar
  64. 64.
    Klonguet-Higgins, H. C. (1968). Holographic model of temporal recall. Nature, 217(5123), 104.PubMedGoogle Scholar
  65. 65.
    Greer, E. L., & Shi, Y. (2012). Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 13(5), 343–357.PubMedGoogle Scholar
  66. 66.
    Greer, E. L., Maures, T. J., Ucar, D., Hauswirth, A. G., Mancini, E., Lim, J. P., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365–371.PubMedGoogle Scholar
  67. 67.
    Zuber, J., Shi, J., Wang, E., Rappaport, A. R., Herrmann, H., Sison, E. A., et al. (2011). RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 478(7370), 524–528.PubMedGoogle Scholar
  68. 68.
    Barrero, M. J., & Izpisua Belmonte, J. C. (2011). iPS cells forgive but do not forget. Nature Cell Biology, 13(5), 523–525.PubMedGoogle Scholar
  69. 69.
    Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19(3), 219–220.PubMedGoogle Scholar
  70. 70.
    Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., & Blau, H. M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 463(7284), 1042–1047.PubMedGoogle Scholar
  71. 71.
    Simonsson, S., & Gurdon, J. (2004). DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biology, 6(10), 984–990.PubMedGoogle Scholar
  72. 72.
    Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.PubMedGoogle Scholar
  73. 73.
    Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., et al. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature, 463(7284), 1101–1105.PubMedGoogle Scholar
  74. 74.
    Lessard, J. A., & Crabtree, G. R. (2010). Chromatin regulatory mechanisms in pluripotency. Annual Review of Cell and Developmental Biology, 26, 503–532.PubMedGoogle Scholar
  75. 75.
    Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648), 251–260.PubMedGoogle Scholar
  76. 76.
    van Leeuwen, F., Gafken, P. R., & Gottschling, D. E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell, 109(6), 745–756.PubMedGoogle Scholar
  77. 77.
    Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R. R., & Richmond, T. J. (2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science, 306(5701), 1571–1573.PubMedGoogle Scholar
  78. 78.
    Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., & Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nature Neuroscience, 1(7), 602–609.PubMedGoogle Scholar
  79. 79.
    Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3(3), 238–244.PubMedGoogle Scholar
  80. 80.
    Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44(1), 5–21.PubMedGoogle Scholar
  81. 81.
    Klann, E., Antion, M. D., Banko, J. L., & Hou, L. (2004). Synaptic plasticity and translation initiation. Learning and Memory, 11(4), 365–372.PubMedGoogle Scholar
  82. 82.
    Pittenger, C., & Kandel, E. R. (2003). In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1432), 757–763.PubMedGoogle Scholar
  83. 83.
    Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42(6), 961–972.PubMedGoogle Scholar
  84. 84.
    Alarcón, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., et al. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42(6), 947–959.PubMedGoogle Scholar
  85. 85.
    Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279(39), 40545–40559.PubMedGoogle Scholar
  86. 86.
    Yeh, S. H., Lin, C. H., & Gean, P. W. (2004). Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Molecular Pharmacology, 65(5), 1286–1292.PubMedGoogle Scholar
  87. 87.
    Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedGoogle Scholar
  88. 88.
    Kaminsky, Z. A., Tang, T., Wang, S. C., Ptak, C., Oh, G. H., Wong, A. H., et al. (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics, 41(2), 240–245.PubMedGoogle Scholar
  89. 89.
    Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609.PubMedGoogle Scholar
  90. 90.
    Henderson, I. R., Shindo, C., & Dean, C. (2003). The need for winter in the switch to flowering. Annual Review of Genetics, 37, 371–392.PubMedGoogle Scholar
  91. 91.
    Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901), 935–941.PubMedGoogle Scholar
  92. 92.
    Naruse, Y., Oh-hashi, K., Iijima, N., Naruse, M., Yoshioka, H., & Tanaka, M. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Molecular and Cellular Biology, 24(14), 6278–6287.PubMedGoogle Scholar
  93. 93.
    Crosio, C., Cermakian, N., Allis, C. D., & Sassone-Corsi, P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nature Neuroscience, 3(12), 1241–1247.PubMedGoogle Scholar
  94. 94.
    Hochedlinger, K., & Jaenisch, R. (2003). Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. The New England Journal of Medicine, 349(3), 275–286.PubMedGoogle Scholar
  95. 95.
    Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., & Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 39(3), 295–302.PubMedGoogle Scholar
  96. 96.
    Ohi, Y., Qin, H., Hong, C., Blouin, L., Polo, J. M., Guo, T., et al. (2011). Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology, 13(5), 541–549.PubMedGoogle Scholar
  97. 97.
    Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.PubMedGoogle Scholar
  98. 98.
    McGrath, J., & Solter, D. (1984). Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science, 226(4680), 1317–1319.PubMedGoogle Scholar
  99. 99.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.PubMedGoogle Scholar
  100. 100.
    Jullien, J., Astrand, C., Halley-Stott, R. P., Garrett, N., & Gurdon, J. B. (2010). Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5483–5488.PubMedGoogle Scholar
  101. 101.
    Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C. J., Creyghton, M. P., et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462(7273), 595–601.PubMedGoogle Scholar
  102. 102.
    Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–159.PubMedGoogle Scholar
  103. 103.
    Pasque, V., Jullien, J., Miyamoto, K., Halley-Stott, R. P., & Gurdon, J. B. (2011). Epigenetic factors influencing resistance to nuclear reprogramming. Trends in Genetics, 27(12), 516–525.PubMedGoogle Scholar
  104. 104.
    Briggs, R., & King, T. J. (1952). Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 38(5), 455–463.PubMedGoogle Scholar
  105. 105.
    Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 10, 622–640.PubMedGoogle Scholar
  106. 106.
    Halley-Stott, R. P., Pasque, V., Astrand, C., Miyamoto, K., Simeoni, I., Jullien, J., et al. (2010). Mammalian nuclear transplantation to Germinal Vesicle stage Xenopus oocytes - a method for quantitative transcriptional reprogramming. Methods, 51(1), 56–65.PubMedGoogle Scholar
  107. 107.
    Li, J., Greco, V., Guasch, G., Fuchs, E., & Mombaerts, P. (2007). Mice cloned from skin cells. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2738–2743.PubMedGoogle Scholar
  108. 108.
    Utikal, J., Polo, J. M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R. M., et al. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259), 1145–1148.PubMedGoogle Scholar
  109. 109.
    Egli, D., Rosains, J., Birkhoff, G., & Eggan, K. (2007). Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 447(7145), 679–685.PubMedGoogle Scholar
  110. 110.
    Tecirlioglu, R. T., Guo, J., & Trounson, A. O. (2006). Interspecies somatic cell nuclear transfer and preliminary data for horse-cow/mouse iSCNT. Stem Cell Reviews, 2(4), 277–287.PubMedGoogle Scholar
  111. 111.
    Weintraub, H., Tapscott, S. J., Davis, R. L., Thayer, M. J., Adam, M. A., Lassar, A. B., et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5434–5438.PubMedGoogle Scholar
  112. 112.
    Wilmut, I., Beaujean, N., de Sousa, P. A., Dinnyes, A., King, T. J., Paterson, L. A., et al. (2002). Somatic cell nuclear transfer. Nature, 419(6907), 583–586.PubMedGoogle Scholar
  113. 113.
    Silva, J., Chambers, I., Pollard, S., & Smith, A. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441(7096), 997–1001.PubMedGoogle Scholar
  114. 114.
    Blau, H. M., Chiu, C. P., & Webster, C. (1983). Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell, 32(4), 1171–1180.PubMedGoogle Scholar
  115. 115.
    Do, J. T., & Schöler, H. R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells, 22(6), 941–949.PubMedGoogle Scholar
  116. 116.
    Johansson, C. B., Youssef, S., Koleckar, K., Holbrook, C., Doyonnas, R., Corbel, S. Y., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10(5), 575–583.PubMedGoogle Scholar
  117. 117.
    Pereira, C. F., Piccolo, F. M., Tsubouchi, T., Sauer, S., Ryan, N. K., Bruno, L., et al. (2010). ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell, 6(6), 547–556.PubMedGoogle Scholar
  118. 118.
    Pomerantz, J., & Blau, H. M. (2004). Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biology, 6(9), 810–816.PubMedGoogle Scholar
  119. 119.
    Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416(6880), 545–548.PubMedGoogle Scholar
  120. 120.
    Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D. M., Nakano, Y., et al. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416(6880), 542–545.PubMedGoogle Scholar
  121. 121.
    Rudel, D., & Sommer, R. J. (2003). The evolution of developmental mechanisms. Developmental Biology, 264(1), 15–37.PubMedGoogle Scholar
  122. 122.
    Kirk, M. M., Ransick, A., McRae, S. E., & Kirk, D. L. (1993). The relationship between cell size and cell fate in Volvox carteri. The Journal of Cell Biology, 123(1), 191–208.PubMedGoogle Scholar
  123. 123.
    Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., et al. (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262), 402–406.PubMedGoogle Scholar
  124. 124.
    Carvajal-Vergara, X., Sevilla, A., D’Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299), 808–812.PubMedGoogle Scholar
  125. 125.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedGoogle Scholar
  126. 126.
    Kim, J. B., Sebastiano, V., Wu, G., Araúzo-Bravo, M. J., Sasse, P., Gentile, L., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.PubMedGoogle Scholar
  127. 127.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.PubMedGoogle Scholar
  128. 128.
    Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.PubMedGoogle Scholar
  129. 129.
    Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., et al. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474(7350), 225–229.PubMedGoogle Scholar
  130. 130.
    Choi, Y. J., Lin, C. P., Ho, J. J., He, X., Okada, N., Bu, P., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13(11), 1353–1360.PubMedGoogle Scholar
  131. 131.
    Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedGoogle Scholar
  132. 132.
    Yamanaka, S. (2009). Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460(7251), 49–52.PubMedGoogle Scholar
  133. 133.
    Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299), 704–712.PubMedGoogle Scholar
  134. 134.
    Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.PubMedGoogle Scholar
  135. 135.
    Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Cañamero, M., et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–1139.PubMedGoogle Scholar
  136. 136.
    Ho, L., & Crabtree, G. R. (2010). Chromatin remodelling during development. Nature, 463(7280), 474–484.PubMedGoogle Scholar
  137. 137.
    Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.PubMedGoogle Scholar
  138. 138.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.PubMedGoogle Scholar
  139. 139.
    Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.PubMedGoogle Scholar
  140. 140.
    Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7), 1001–1012.PubMedGoogle Scholar
  141. 141.
    Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., et al. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088), 1199–1203.PubMedGoogle Scholar
  142. 142.
    Stadtfeld, M., Maherali, N., Breault, D. T., & Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2(3), 230–240.PubMedGoogle Scholar
  143. 143.
    Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336(6200), 688–690.PubMedGoogle Scholar
  144. 144.
    Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., & Niwa, H. (2006). Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochemical and Biophysical Research Communications, 343(1), 159–166.PubMedGoogle Scholar
  145. 145.
    Chambers, I., & Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 23(43), 7150–7160.PubMedGoogle Scholar
  146. 146.
    Ben-Shushan, E., Sharir, H., Pikarsky, E., & Bergman, Y. (1995). A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells. Molecular and Cellular Biology, 15(2), 1034–1048.PubMedGoogle Scholar
  147. 147.
    Fuhrmann, G., Chung, A. C., Jackson, K. J., Hummelke, G., Baniahmad, A., Sutter, J., et al. (2001). Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Developmental Cell, 1(3), 377–387.PubMedGoogle Scholar
  148. 148.
    Gu, P., LeMenuet, D., Chung, A. C., Mancini, M., Wheeler, D. A., & Cooney, A. J. (2005). Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Molecular and Cellular Biology, 25(19), 8507–8519.PubMedGoogle Scholar
  149. 149.
    Gu, P., Le Menuet, D., Chung, A. C., & Cooney, A. J. (2006). Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression. Molecular and Cellular Biology, 26(24), 9471–9483.PubMedGoogle Scholar
  150. 150.
    Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., & Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 60(3), 461–472.PubMedGoogle Scholar
  151. 151.
    Chin, M. H., Pellegrini, M., Plath, K., & Lowry, W. E. (2010). Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell, 7(2), 263–269.PubMedGoogle Scholar
  152. 152.
    Newman, A. M., & Cooper, J. B. (2010). Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell, 7(2), 258–262.PubMedGoogle Scholar
  153. 153.
    Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 41(12), 1350–1353.PubMedGoogle Scholar
  154. 154.
    Fujiki, R., Hashiba, W., Sekine, H., Yokoyama, A., Chikanishi, T., Ito, S., et al. (2011). GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature, 480(7378), 557–560.PubMedGoogle Scholar
  155. 155.
    Silva, J., Nichols, J., Theunissen, T. W., Guo, G., van Oosten, A. L., Barrandon, O., et al. (2009). Nanog is the gateway to the pluripotent ground state. Cell, 138(4), 722–737.PubMedGoogle Scholar
  156. 156.
    Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14152–14157.PubMedGoogle Scholar
  157. 157.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedGoogle Scholar
  158. 158.
    Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R. A., et al. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 3(2), 132–135.PubMedGoogle Scholar
  159. 159.
    Feng, B., Jiang, J., Kraus, P., Ng, J. H., Heng, J. C., Chan, Y. S., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11(2), 197–203.PubMedGoogle Scholar
  160. 160.
    Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–1135.PubMedGoogle Scholar
  161. 161.
    Si-Tayeb, K., Noto, F. K., Sepac, A., Sedlic, F., Bosnjak, Z. J., Lough, J. W., et al. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Developmental Biology, 10, 81.PubMedGoogle Scholar
  162. 162.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386.PubMedGoogle Scholar
  163. 163.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041.PubMedGoogle Scholar
  164. 164.
    Wang, L., Walker, B. L., Iannaccone, S., Bhatt, D., Kennedy, P. J., & Tse, W. T. (2009). Bistable switches control memory and plasticity in cellular differentiation. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6638–6643.PubMedGoogle Scholar
  165. 165.
    Rizzino, A. (2007). A challenge for regenerative medicine: proper genetic programming, not cellular mimicry. Developmental Dynamics, 236(12), 3199–3207.PubMedGoogle Scholar
  166. 166.
    Croft, A. P., & Przyborski, S. A. (2006). Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells, 24(8), 1841–1851.PubMedGoogle Scholar
  167. 167.
    Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A., & Fischer, I. (2004). Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. Journal of Neuroscience Research, 77(2), 192–204.PubMedGoogle Scholar
  168. 168.
    Joseph, N. M., & Morrison, S. J. (2005). Toward an understanding of the physiological function of Mammalian stem cells. Developmental Cell, 9(2), 173–183.PubMedGoogle Scholar
  169. 169.
    Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.PubMedGoogle Scholar
  170. 170.
    Jackson, K. A., Snyder, D. S., & Goodell, M. A. (2004). Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artifacts. Stem Cells, 22(2), 180–187.PubMedGoogle Scholar
  171. 171.
    Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428(6983), 668–673.PubMedGoogle Scholar
  172. 172.
    Zhang, J., Tam, W. L., Tong, G. Q., Wu, Q., Chan, H. Y., Soh, B. S., et al. (2006). Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology, 8(10), 1114–1123.PubMedGoogle Scholar
  173. 173.
    Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223.PubMedGoogle Scholar
  174. 174.
    Loewer, S., Cabili, M. N., Guttman, M., Loh, Y. H., Thomas, K., Park, I. H., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42(12), 1113–1117.PubMedGoogle Scholar
  175. 175.
    Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27(5), 459–461.PubMedGoogle Scholar
  176. 176.
    Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8(6), 633–638.PubMedGoogle Scholar
  177. 177.
    Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423–434.PubMedGoogle Scholar
  178. 178.
    Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y., & Méchali, M. (2005). Mitotic remodeling of the replicon and chromosome structure. Cell, 123(5), 787–801.PubMedGoogle Scholar
  179. 179.
    Miyamoto, K., Nagai, K., Kitamura, N., Nishikawa, T., Ikegami, H., Binh, N. T., et al. (2011). Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7040–7045.PubMedGoogle Scholar
  180. 180.
    Egli, D., Birkhoff, G., & Eggan, K. (2008). Mediators of reprogramming: transcription factors and transitions through mitosis. Nature Reviews Molecular Cell Biology, 9(7), 505–516.PubMedGoogle Scholar
  181. 181.
    Inoue, K., Kohda, T., Sugimoto, M., Sado, T., Ogonuki, N., Matoba, S., et al. (2010). Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 330(6003), 496–499.PubMedGoogle Scholar
  182. 182.
    Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A., & Feinberg, A. P. (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genetics, 41(2), 246–250.PubMedGoogle Scholar
  183. 183.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedGoogle Scholar
  184. 184.
    Tamada, H., Van Thuan, N., Reed, P., Nelson, D., Katoku-Kikyo, N., Wudel, J., et al. (2006). Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Molecular and Cellular Biology, 26(4), 1259–1271.PubMedGoogle Scholar
  185. 185.
    Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M. J., Heidersbach, A., et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460(7257), 863–868.PubMedGoogle Scholar
  186. 186.
    Singhal, N., Graumann, J., Wu, G., Araúzo-Bravo, M. J., Han, D. W., Greber, B., et al. (2010). Chromatin-Remodeling Components of the BAF complex facilitate reprogramming. Cell, 141(6), 943–955.PubMedGoogle Scholar
  187. 187.
    Liang, G., He, J., & Zhang, Y. (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology, 14(5), 457–466.PubMedGoogle Scholar
  188. 188.
    Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural and Molecular Biology, 15(11), 1176–1183.PubMedGoogle Scholar
  189. 189.
    Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., et al. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Communications, 2, 241.PubMedGoogle Scholar
  190. 190.
    Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., et al. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477(7366), 606–610.PubMedGoogle Scholar
  191. 191.
    Pasque, V., Gillich, A., Garrett, N., & Gurdon, J. B. (2011). Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO Journal, 30(12), 2373–2387.PubMedGoogle Scholar
  192. 192.
    Angelov, D., Molla, A., Perche, P. Y., Hans, F., Côté, J., Khochbin, S., et al. (2003). The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Molecular Cell, 11(4), 1033–1041.PubMedGoogle Scholar
  193. 193.
    Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3(5), 568–574.PubMedGoogle Scholar
  194. 194.
    Li, S. C., Jin, Y., Loudon, W. G., Song, Y., Ma, Z., Weiner, L. P., et al. (2011). Increase developmental plasticity of human keratinocytes with gene suppression. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12793–12798.PubMedGoogle Scholar
  195. 195.
    Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144.PubMedGoogle Scholar
  196. 196.
    Tanaka, M., Hennebold, J. D., Macfarlane, J., & Adashi, E. Y. (2001). A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development, 128(5), 655–664.PubMedGoogle Scholar
  197. 197.
    Onder, T. T., Kara, N., Cherry, A., Sinha, A. U., Zhu, N., Bernt, K. M., et al. (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483(7391), 598–602.PubMedGoogle Scholar
  198. 198.
    Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.PubMedGoogle Scholar
  199. 199.
    Lluis, F., Ombrato, L., Pedone, E., Pepe, S., Merrill, B. J., & Cosma, M. P. (2011). T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11912–11917.PubMedGoogle Scholar
  200. 200.
    Ang, Y. S., Tsai, S. Y., Lee, D. F., Monk, J., Su, J., Ratnakumar, K., et al. (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145(2), 183–197.PubMedGoogle Scholar
  201. 201.
    Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.PubMedGoogle Scholar
  202. 202.
    Li, J., Ishii, T., Feinstein, P., & Mombaerts, P. (2004). Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature, 428(6981), 393–399.PubMedGoogle Scholar
  203. 203.
    Eggan, K., Baldwin, K., Tackett, M., Osborne, J., Gogos, J., Chess, A., et al. (2004). Mice cloned from olfactory sensory neurons. Nature, 428(6978), 44–49.PubMedGoogle Scholar
  204. 204.
    Hochedlinger, K., & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature, 415(6875), 1035–1038.PubMedGoogle Scholar
  205. 205.
    Inoue, K., Wakao, H., Ogonuki, N., Miki, H., Seino, K., Nambu-Wakao, R., et al. (2005). Generation of cloned mice by direct nuclear transfer from natural killer T cells. Current Biology, 15(12), 1114–1118.PubMedGoogle Scholar
  206. 206.
    Wakayama, S., Ohta, H., Kishigami, S., Thuan, N. V., Hikichi, T., Mizutani, E., et al. (2005). Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biology of Reproduction, 72(4), 932–936.PubMedGoogle Scholar
  207. 207.
    Blelloch, R. H., Hochedlinger, K., Yamada, Y., Brennan, C., Kim, M., Mintz, B., et al. (2004). Nuclear cloning of embryonal carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 13985–13990.PubMedGoogle Scholar
  208. 208.
    Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., & Jaenisch, R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 24(9), 2007–2013.PubMedGoogle Scholar
  209. 209.
    Blau, H. M., Pavlath, G. K., Hardeman, E. C., Chiu, C. P., Silberstein, L., Webster, S. G., et al. (1985). Plasticity of the differentiated state. Science, 230(4727), 758–766.PubMedGoogle Scholar
  210. 210.
    Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., et al. (2009). Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics, 41(9), 968–976.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cellular and Molecular Research Center, School of MedicineKurdistan University of Medical SciencesSanandajIran

Personalised recommendations