Stem Cell Reviews and Reports

, Volume 9, Issue 2, pp 226–240 | Cite as

The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord

  • Ariff Bongso
  • Chui-Yee Fong


Mesenchymal stem cells (MSCs) from bone marrow, adult organs and fetuses face the disadvantages of invasive isolation, limited cell numbers and ethical constraints while embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) face the clinical hurdles of potential immunorejection and tumorigenesis respectively. These challenges have prompted interest in the study and evaluation of stem cells from birth-associated tissues. The umbilical cord (UC) has been the most popular. Hematopoietic stem cells (HSCs) harvested from cord blood have been successfully used for the treatment of hematopoietic diseases. Stem cell populations have also been reported in other compartments of the UC viz., amnion, subamnion, perivascular region, Wharton’s jelly, umbilical blood vessel adventia and endothelium. Differences in stemness characteristics between compartments have been reported and hence derivation protocols using whole UC pieces containing all compartments yield mixed stem cell populations with varied characteristics. Stem cells derived directly from the uncontaminated Wharton’s jelly (hWJSCs) appear to offer the best clinical utility because of their unique beneficial properties. They are non-controversial, can be harvested painlessly in abundance, proliferative, possess stemness properties that last several passages in vitro, multipotent, hypoimmunogenic and do not induce tumorigenesis even though they have some ESC markers. hWJSCs and its extracts (conditioned medium and lysate) also possess anti-cancer properties and support HSC expansion ex vivo. They are thus attractive autologous or allogeneic agents for the treatment of malignant and non-malignant hematopoietic and non-hematopoietic diseases. This review critically evaluates their therapeutic value, the challenges and future directions for their clinical application.


Standardization of derivation protocols Properties and applications of Wharton’s jelly stem cells Umbilical cord compartments 



The authors’ studies reported in this review were carried out under grant numbers R-174-000-131-213, R-174-000-122-112 and R-174-000-129-112. The financial support from the National Medical Research Council (NMRC) Singapore and the Academic Research Fund (AcRF) for these grants is gratefully acknowledged.

Statement of conflicts of interest

Both authors have no conflict of interests.


  1. 1.
    Laurent, L. C., Ulitsky, I., Slavin, I., et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–118.PubMedCrossRefGoogle Scholar
  2. 2.
    Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 11, 268–277.PubMedCrossRefGoogle Scholar
  3. 3.
    Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., et al. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28, 1568–1570.PubMedCrossRefGoogle Scholar
  4. 4.
    Bongso, A., Fong, C. Y., & Gauthaman, K. (2008). Taking stem cells to the clinic: major challenges. Journal of Cellular Biochemistry, 105, 1352–1360.PubMedCrossRefGoogle Scholar
  5. 5.
    Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Future Medicine, 4, 423–433.Google Scholar
  6. 6.
    Weiss, M. L., & Troyer, D. L. (2006). Stem cells in the umbilical cord. Stem Cell Reviews, 2, 155–162.PubMedCrossRefGoogle Scholar
  7. 7.
    De-Miguel, M. P., Arnalich-Montiel, F., Lopez-Iglesias, P., Blazquez-Martinez, A., & Nistal, M. (2009). Epiblast-derived stem cells in embryonic and adult tissues. International Journal of Developmental Biology, 53, 1529–1540.PubMedCrossRefGoogle Scholar
  8. 8.
    Henderson, J. K., Draper, J. S., Baillie, H. S., et al. (2002). Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–337.PubMedCrossRefGoogle Scholar
  9. 9.
    William, P. L., Banister, L. H., Berry, M. M., et al. (1995). Grays anatomy (38th ed.). London: ELBS Churchill Livingstone.Google Scholar
  10. 10.
    Jeschke, M. G., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Kita, K. (2011). Umbilical cord lining membrane and Wharton’s jelly-derived mesenchymal stem cells: the similarities and differences. Open Tissue Engineering and Regenerative Medicine Journal, 4, 21–27.CrossRefGoogle Scholar
  11. 11.
    Conconi, M. T., Di Liddo, R., Tommasini, M., Calore, C., & Parnigotto, P. P. (2011). Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Open Tissue Engineering and Regenerative Medicine Journal, 4, 6–20.CrossRefGoogle Scholar
  12. 12.
    Weiss, M. L., Medicetty, S., Bledsoe, A. R., Rachakatla, R. S., Choi, M., & Merchav, S. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.PubMedCrossRefGoogle Scholar
  13. 13.
    Seshareddy, K., Troyer, D., & Weiss, M. L. (2008). Methods to isolate mesenchymal-like cells from Wharton’s jelly of umbilical cord. Methods in Cell Biology, 86, 101–119.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s Jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.PubMedCrossRefGoogle Scholar
  15. 15.
    Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15, 708–718.PubMedCrossRefGoogle Scholar
  16. 16.
    Fong, C. Y., Gauthaman, K., & Bongso, A. (2009). Reproductive stem cells of embryonic origin: comparative properties and potential benefits of human embryonic stem cells and Wharton’s jelly stem cells. In C. Simon & A. Pellicer (Eds.), AStem cells in human reproduction (2nd ed., pp. 136–149). New York: Informa Healthcare.Google Scholar
  17. 17.
    Fong, C. Y., Subramanian, A., Biswas, A., et al. (2010). Derivation efficiency, cell proliferation, frozen-thaw survival, ‘stemness’ properties, and differentiation of human Wharton’s jelly stem cells: their potential for concurrent banking with cord blood for regenerative medicine purposes. Reproductive Biomedicine Online, 21, 391–401.PubMedCrossRefGoogle Scholar
  18. 18.
    Angelucci, S., Marchisio, M., Giuseppe, F. D., Pierdomenico, L., Sulpizio, M., & Eleuterio, E. (2010). Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Science, 8, 18–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Ding, D. C., Shyu, W. C., Lin, S. Z., Liu, H. W., Chiou, S. H., & Chu, T. Y. (2012). Human umbilical cord mesenchymal stem cells support non-tumorigenic expansion of human embryonic stem cells. Cell Transplantation. doi: 10.3727/096368912X647199.
  20. 20.
    Kikuchi-Taura, A., Taguchi, A., Kanda, T., et al. (2012). Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy, 14, 441–450.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91, 1017–1026.PubMedGoogle Scholar
  22. 22.
    Schugar, R. C., Chirieleison, S. M., Wescoe, K. E., et al. (2009). High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. Journal of Biomedicine and Biotechnology, 2009, 789526.PubMedCrossRefGoogle Scholar
  23. 23.
    Capelli, C., Gotti, E., Morigi, M., et al. (2011). Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy, 13, 786–801.PubMedCrossRefGoogle Scholar
  24. 24.
    Bosch, J., Houben, A. P., Radke, T. F., et al. (2012). Distinct differentiation potential of ‘MSC’ derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells? Stem Cells and Development. doi: 10.1089/scd.2011.0414.
  25. 25.
    Tsagias, N., Koliakos, I., Karagiannis, V., Eleftheriadou, M., & Koliakos, G. G. (2011). Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfusion Medicine, 21, 253–261.PubMedCrossRefGoogle Scholar
  26. 26.
    Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of mesenchymal stem cells from the sub amniotic human umbilical cord lining membrane. Stem Cells and Development, 19, 491–502.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.PubMedCrossRefGoogle Scholar
  28. 28.
    Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21, 105–110.PubMedCrossRefGoogle Scholar
  29. 29.
    Watt, S. M., Su, C. C., & Chan, J. Y. (2010). The therapeutic potential of stem cells in umbilical cord and umbilical cord blood. Journal of Medical Sciences, 30, 177–187.Google Scholar
  30. 30.
    Nanaev, A. K., Kohnen, G., Milovanov, A. P., Domogatsky, S. P., & Kaufmann, P. (1997). Stromal differentaition and architecture of the human umbilical cord. Placenta, 18, 53–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishige, I., Nagamura-Inoue, T., Honda, M. J., et al. (2009). Comparison of mesenchymal stem cells derived from arterial, venous and Whartons’ jelly explants of human umbilical cord. International Journal of Hematology, 90, 261–269.PubMedCrossRefGoogle Scholar
  32. 32.
    Mareschi, K., Biasin, E., Piacibello, W., Aglietta, M., Madon, E., & Fagioli, F. (2001). Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica, 86, 1099–1100.PubMedGoogle Scholar
  33. 33.
    Wexler, S. A., Donaldson, C., Denning-Kendall, P., Rice, C., Bradley, B., & Hows, J. M. (2003). Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized blood adult blood are not. British Journal of Haematology, 121, 368–374.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–1675.PubMedCrossRefGoogle Scholar
  35. 35.
    Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., Grinenko, T. S., & Sukhikh, G. T. (2007). Umbilical cord blood mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 143, 127–131.PubMedCrossRefGoogle Scholar
  36. 36.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells, 26, 146–150.PubMedCrossRefGoogle Scholar
  37. 37.
    Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9, 1–14.CrossRefGoogle Scholar
  38. 38.
    La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of OCT4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.PubMedCrossRefGoogle Scholar
  39. 39.
    Anzalone, R., Lo Iacono, M., Corrao, S., et al. (2010). New emerging potentials for human Wharton’s jelly mesenchymal stem cells; immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development, 19, 423–438.PubMedCrossRefGoogle Scholar
  40. 40.
    La Rocca, G. (2011). Connecting the dots: the promises of Wharton’s jelly mesenchymal stem cells for tissue repair and regeneration. Open Tissue Engineering and Regenerative Medicine Journal, 4, 3–5.CrossRefGoogle Scholar
  41. 41.
    Wang, L., Ott, L., Seshareddy, K., Weiss, M., & Detamore, M. S. (2011). Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Future Medicine, 6, 95–109.Google Scholar
  42. 42.
    Lutjimeier, B., Troyer, D. L., & Weiss, M. L. (2010). Wharton’s jelly-derived mesenchymal stromal cells. In C. L. Cetrulo, K. J. Cetrulo, & C. L. Cetrulo Jr. (Eds.), Perinatal stem cells (pp. 79–97). NJ: Wiley.CrossRefGoogle Scholar
  43. 43.
    Troyer, D. L., & Weiss, M. L. (2008). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.PubMedCrossRefGoogle Scholar
  44. 44.
    Prasanna, S. J., & Jahnavi, V. S. (2011). Wharton’s jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Engineering and Regenerative Medicine Journal, 4, 28–38.CrossRefGoogle Scholar
  45. 45.
    Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells, 25, 319–331.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang, X. Y., Lan, Y., He, W. Y., et al. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.PubMedCrossRefGoogle Scholar
  47. 47.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  48. 48.
    Taghizadeh, R. R., Cetrulo, K. J., & Cetrulo, C. L. (2011). Wharton’s jelly stem cells: future clinical applications. Placenta, 32, S311–S315.PubMedCrossRefGoogle Scholar
  49. 49.
    Meyer, T., Pfeifroth, A., & Hocht, B. (2008). Isolation, and characterization of mesenchymal stem cells in Wharton’s jelly of the human umbilical cord: potent cells for cell-based therapies in paediatric surgery? European Surgery, 40, 239–244.CrossRefGoogle Scholar
  50. 50.
    Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., Lin, H. D., Biswas, A., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113, 658–668.PubMedCrossRefGoogle Scholar
  51. 51.
    Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113, 2027–2039.PubMedCrossRefGoogle Scholar
  52. 52.
    Huang, Y. C., Parolini, O., La Rocca, G., & Deng, L. (2012). Umbilical cord versus bone marrow derived mesenchymal stromal cells. Stem Cells and Development, 21, 2900–2903.PubMedCrossRefGoogle Scholar
  53. 53.
    Can, A., & Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25, 2886–2895.PubMedCrossRefGoogle Scholar
  54. 54.
    Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.PubMedCrossRefGoogle Scholar
  55. 55.
    Tipnis, S., Viswanathan, C., & Majumdar, A. S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunology and Cell Biology, 88, 795–806.PubMedCrossRefGoogle Scholar
  56. 56.
    Fan, C. G., Zhang, Q., & Zhou, J. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195–207.PubMedCrossRefGoogle Scholar
  57. 57.
    Gauthaman, K., Venugopal, J. R., Fong, C. Y., Biswas, A., Ramakrishna, S., & Bongso, A. (2011). Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Engineering. Part A, 17, 71–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Fong, C. Y., Subramanian, A., Gauthaman, K., et al. (2012). Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Reviews and Reports, 8, 195–209.PubMedCrossRefGoogle Scholar
  59. 59.
    Vidal, M. A., Walker, N. J., Napoli, E., & Borjesson, D. L. (2012). Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue and umbilical cord tissue. Stem Cells and Development, 21, 273–283.PubMedCrossRefGoogle Scholar
  60. 60.
    La Rocca, G., Anzalone, R., & Farina, F. (2009). The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scandinavian Journal of Immunology, 70, 161–162.PubMedCrossRefGoogle Scholar
  61. 61.
    Fong, C. Y., Chak, L. L., Biswas, A., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews and Reports, 7, 1–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Carlin, R., Davis, D., Weiss, M., Schultz, B., & Troyer, D. (2006). Expression of early transcription factors Oct-4, Sox-2 and nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 4, 1–13.CrossRefGoogle Scholar
  63. 63.
    Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S., & Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Whartons jelly-derived mesenchymal stem cells. Stem Cells and Development, 19, 117–130.PubMedCrossRefGoogle Scholar
  64. 64.
    Hoynowski, S. M., Fry, M. M., Gardner, B. M., et al. (2007). Charaterization and differentiation of equine umbilical cord derived matrix cells. Biochemical and Biophysical Research Communications, 362, 347–353.PubMedCrossRefGoogle Scholar
  65. 65.
    Gauthaman, K., Fong, C. Y., Suganya, C. A., et al. (2012). Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive Biomedicine Online, 24, 235–246.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang, Y., Han, Z. B., Ma, J., et al. (2012). A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells and Development, 21, 1401–1408.PubMedCrossRefGoogle Scholar
  67. 67.
    Fong, C. Y. (1993). Human tubal cell coculture: In vitro cell behaviour and use of conditioned medium for embryonic support. MSc. Thesis. Singapore: National University of Singapore.Google Scholar
  68. 68.
    Fu, Y. S., Shih, Y. T., Cheng, Y. C., & Min, M. Y. (2004). Transformation of human umbilical mesenchymal cells into neurons in vitro. Journal of Biomedical Science, 11, 652–660.PubMedCrossRefGoogle Scholar
  69. 69.
    Garzón, I., Pérez-Köhler, B., Garrido-Gómez, J., et al. (2012). Evaluation of the cell viability of human Wharton’s jelly stem cells for use in cell therapy. Tissue Engineering. Part C, Methods, 18, 408–419.PubMedCrossRefGoogle Scholar
  70. 70.
    Ma, L., Feng, X. Y., Cui, B. L., et al. (2005). Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chinese Medical Journal, 118, 1987–1993.PubMedGoogle Scholar
  71. 71.
    Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Conconi, M. T., Burra, P., Di, L. R., Calore, C., et al. (2006). CD 105 (+) cells from Wharton’s Jelly show in vitro and in vivo myogenic differentiative potential. International Journal of Molecular Medicine, 18, 1089–1096.PubMedGoogle Scholar
  73. 73.
    Wu, K. H., Zhou, B., Lu, S. H., et al. (2007). In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. Journal of Cellular Biochemistry, 100, 608–616.PubMedCrossRefGoogle Scholar
  74. 74.
    Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One, e1451, 1–9.Google Scholar
  75. 75.
    Anzalone, R., Lo Lacono, M., Loria, T., et al. (2011). Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of Type 1 diabetes. Stem Cell Reviews and Reports, 7, 342–363.PubMedCrossRefGoogle Scholar
  76. 76.
    Medicetty, S., Bledsoe, A. R., Fahrenholtz, C. B., Troyer, D., & Weiss, M. L. (2004). Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Experimental Neurology, 190, 32–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Yang, D., Zhang, Z., Oldenberg, M., Ayala, M., & Zhang, S. C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells, 26, 55–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Deuse, T., Stubbendorff, M., Tang-Quan, K., et al. (2011). Immunogenecity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplantation, 20, 655–667.PubMedCrossRefGoogle Scholar
  79. 79.
    Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and Wharton’s jelly mesenchymal stem cells differentially. PLoS One, 5, e9016.PubMedCrossRefGoogle Scholar
  80. 80.
    De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.PubMedCrossRefGoogle Scholar
  81. 81.
    Illancheran, S., Moodley, Y., & Manuelpillai, U. (2009). Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta, 3, 2–10.CrossRefGoogle Scholar
  82. 82.
    Rachkatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–835.CrossRefGoogle Scholar
  83. 83.
    Ayuzawa, R., Doi, C., Rachakatla, R. S., et al. (2009). Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280, 31–37.PubMedCrossRefGoogle Scholar
  84. 84.
    Ganta, C., Chiyo, D., Ayuzawa, R., et al. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Research, 69, 1815–1820.PubMedCrossRefGoogle Scholar
  85. 85.
    Maurya, D. K., Doi, C., Kawabata, A., et al. (2010). Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590–601.PubMedCrossRefGoogle Scholar
  86. 86.
    Sun, B., Yu, K. R., Bhandari, D. R., Jung, J. W., Kang, S. K., & Kang, K. S. (2010). Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Letters, 296, 178–185.PubMedCrossRefGoogle Scholar
  87. 87.
    Chao, K. C., Yang, H. T., & Chen, M. W. (2011). Human umbilical cord mesenchymal stem cells suppress breast cancer tumorogenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–1815.CrossRefGoogle Scholar
  88. 88.
    Ma, Y., Hao, X., Zhang, S., & Zhang, J. (2012). The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Research and Treatment, 133, 473–485.PubMedCrossRefGoogle Scholar
  89. 89.
    Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.PubMedCrossRefGoogle Scholar
  90. 90.
    Håkelien, A. M., & Collas, P. (2002). Novel approaches to transdifferentiation. Cloning and Stem Cells, 4, 379–387.PubMedCrossRefGoogle Scholar
  91. 91.
    Taranger, C. K., Noer, A., Sørensen, A. L., Håkelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Molecular Biology of the Cell, 16, 5719–5735.PubMedCrossRefGoogle Scholar
  92. 92.
    Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Bone Marrow Transplantation, 13, 1477–1486.CrossRefGoogle Scholar
  93. 93.
    Bakhshi, T., Zabriskie, R. C., Bodies, K., Ramin, S., Laura, A., & Paganessi, L. A. (2008). Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48, 2638–2644.PubMedCrossRefGoogle Scholar
  94. 94.
    Matsuzuka, T., Rachakatla, R. S., Doi, C., et al. (2010). Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer, 70, 28–36.PubMedCrossRefGoogle Scholar
  95. 95.
    Subramanian, A., Gan, S. U., Ngo, K. S., et al. (2012). Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 113, 1886–1895.PubMedCrossRefGoogle Scholar
  96. 96.
    Magin, A. S., Korfer, N. R., Partenheimer, H., Iange, C., Zander, A., & Noll, T. (2009). Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood-a comparative study. Stem Cells and Development, 18, 173–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University Health SystemSingaporeSingapore
  2. 2.Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations