Stem Cell Reviews and Reports

, Volume 8, Issue 4, pp 1275–1281 | Cite as

Telomeres and Tissue Engineering: The Potential Roles of TERT in VEGF-mediated Angiogenesis

  • Fernando P. Hartwig
  • Fernanda Nedel
  • Tiago V. Collares
  • Sandra B. C. Tarquinio
  • Jacques E. Nör
  • Flávio F. Demarco


Telomeres are protective structures located at the end of eukaryotic chromosomes which are shortened after each cell division, leading to senescence. Telomerase activity prevents telomere shortening by reverse transcription catalyzed by the subunit called TERT (telomerase reverse transcriptase). TERT expression has shown interesting cellular properties, which may be appealing for tissue engineering, such as the enhancement of cell proliferation and differentiation abilities in vitro. Despite some evidence for playing these roles in VEGF (vascular endothelial growth factor)-mediated angiogenesis, it is still unclear whether TERT can contribute to this essential event to generate functional organs. This review suggests a hypothesis that TERT and VEGF potentially regulates the transcriptional expression of each other, which would give new perspectives in the roles of telomerase in regulating several cellular processes, and also contributing for a better comprehension of the molecular mechanisms underlying VEGF signaling (both paracrine and autocrine). In general, based on the literature revised, it is possible to conclude that TERT is a potential VEGF enhancer; however, it is necessary to elaborate methodological approaches to explore this potential and to assess the potential benefits on tissue engineering approaches.


TERT VEGF Endothelial cells Differentiation Proliferation 


  1. 1.
    Martinez, P., & Blasco, M. A. (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nature Reviews Cancer, 11, 161–176.PubMedCrossRefGoogle Scholar
  2. 2.
    de Lange, L. T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Development, 19, 2100–2110.PubMedCrossRefGoogle Scholar
  3. 3.
    Blackburn, E. H. (2005). Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Letters, 579, 859–862.PubMedCrossRefGoogle Scholar
  4. 4.
    Pampalona, J., Soler, D., Genesca, A., & Tusell, L. (2010). Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutation Research, 683, 16–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Pampalona, J., Soler, D., Genesca, A., & Tusell, L. (2010). Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes, Chromosomes and Cancer, 49, 368–378.Google Scholar
  6. 6.
    Hornsby, P. J. (2010). Cellular aging and cancer. Critical Reviews Oncology/Hematology, 79, 189–195.CrossRefGoogle Scholar
  7. 7.
    Deng, Y., Chan, S. S., & Chang, S. (2008). Telomere dysfunction and tumour suppression: the senescence connection. Nature Reviews Cancer, 8, 450–458.PubMedCrossRefGoogle Scholar
  8. 8.
    Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.PubMedCrossRefGoogle Scholar
  9. 9.
    Olovnikov, A. M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology, 41, 181–190.PubMedCrossRefGoogle Scholar
  10. 10.
    Good, P. I. (1977). Astochastic model for in vitro ageing II. A theory of marginotomy. Journal of Theoretical Biology, 64, 261–275.PubMedCrossRefGoogle Scholar
  11. 11.
    Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460.PubMedCrossRefGoogle Scholar
  12. 12.
    Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., et al. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 89, 10114–10118.PubMedCrossRefGoogle Scholar
  13. 13.
    Wright, W. E., & Shay, J. W. (1992). The two-stage mechanism controlling cellular senescence and immortalization. Experimental Gerontology, 27, 383–389.PubMedCrossRefGoogle Scholar
  14. 14.
    Maser, R. S., & Depinho, R. A. (2002). Connecting chromosomes, crisis, and cancer. Science, 297, 565–569.PubMedCrossRefGoogle Scholar
  15. 15.
    Greider, C. W., & Blackburn, E. H. (1987). The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell, 51, 887–898.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen, S. B., Graham, M. E., Lovrecz, G. O., Bache, N., Robinson, P. J., & Reddel, R. R. (2007). Protein composition of catalytically active human telomerase from immortal cells. Science, 315, 1850–1853.PubMedCrossRefGoogle Scholar
  17. 17.
    Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W., & Shay, J. W. (1996). Telomerase activity in human germline and embryonic tissues and cells. Developmental Genetics, 18, 173–179.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, L., Bailey, S. M., Okuka, M., Munoz, P., Li, C., Zhou, L., et al. (2007). Telomere lengthening early in development. Nature Cell Biology, 9, 1436–1441.PubMedCrossRefGoogle Scholar
  19. 19.
    Shay, J. W., & Bacchetti, S. (1997). A survey of telomerase activity in human cancer. European Journal of Cancer, 33, 787–791.PubMedCrossRefGoogle Scholar
  20. 20.
    Belair, C. D., Yeager, T. R., Lopez, P. M., & Reznikoff, C. A. (1997). Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proceedings of the National Academy of Sciences of the United States of America, 94, 13677–13682.PubMedCrossRefGoogle Scholar
  21. 21.
    Flores, I., Benetti, R., & Blasco, M. A. (2006). Telomerase regulation and stem cell behaviour. Current Opinion in Cell Biology, 18, 254–260.PubMedCrossRefGoogle Scholar
  22. 22.
    Shukla, S., Acharya, S., Rajput, D., Vagha, S., & Grover, S. (2010). Telomere–the twilight to immortality. Journal of the Association of Physicians of India, 58, 553–560.PubMedGoogle Scholar
  23. 23.
    Flores, I., Cayuela, M. L., & Blasco, M. A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309, 1253–1256.PubMedCrossRefGoogle Scholar
  24. 24.
    Rossi, D. J., Bryder, D., Seita, J., Nussenzweig, A., Hoeijmakers, J., & Weissman, I. L. (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 447, 725–729.PubMedCrossRefGoogle Scholar
  25. 25.
    Wong, K. K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., et al. (2003). Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature, 421, 643–648.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferron, S., Mira, H., Franco, S., Cano-Jaimez, M., Bellmunt, E., Ramirez, C., et al. (2004). Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development, 131, 4059–4070.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferron, S. R., Marques-Torrejon, M. A., Mira, H., Flores, I., Taylor, K., Blasco, M. A., et al. (2009). Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. Journal of Neuroscience, 29, 14394–14407.PubMedCrossRefGoogle Scholar
  28. 28.
    Weinrich, S. L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V. M., Holt, S. E., et al. (1997). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genetics, 17, 498–502.PubMedCrossRefGoogle Scholar
  29. 29.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., et al. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349–352.PubMedCrossRefGoogle Scholar
  30. 30.
    Laschke, M. W., Harder, Y., Amon, M., Martin, I., Farhadi, J., Ring, A., et al. (2006). Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Engineering, 12, 2093–2104.PubMedCrossRefGoogle Scholar
  31. 31.
    Demarco, F. F., Conde, M. C., Cavalcanti, B. N., Casagrande, L., Sakai, V. T., & Nor, J. E. (2011). Dental pulp tissue engineering. Brazilian Dental Journal, 22, 3–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Nedel, F., Andre, D. A., de Oliveira, I. O., Cordeiro, M. M., Casagrande, L., Tarquinio, S. B., et al. (2009). Stem cells: therapeutic potential in dentistry. Journal of Contemporary Dental Practice, 10, 90–96.PubMedGoogle Scholar
  33. 33.
    Sakai, V. T., Cordeiro, M. M., Dong, Z., Zhang, Z., Zeitlin, B. D., & Nor, J. E. (2011). Tooth slice/scaffold model of dental pulp tissue engineering. Advances in Dental Research, 23, 325–332.PubMedCrossRefGoogle Scholar
  34. 34.
    Hegen, A., Blois, A., Tiron, C. E., Hellesoy, M., Micklem, D. R., Nor, J. E., et al. (2011). Efficient in vivo vascularization of tissue-engineering scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 5, e52–e62.PubMedCrossRefGoogle Scholar
  35. 35.
    Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219, 983–985.PubMedCrossRefGoogle Scholar
  36. 36.
    Koch, S., Tugues, S., Li, X., Gualandi, L., & Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors. Biochemical Journal, 437, 169–183.PubMedCrossRefGoogle Scholar
  37. 37.
    Zeitlin, B. D., Ellis, L. M., & Nor, J. E. (2009). Inhibition of vascular endothelial growth factor receptor-1/Wnt/{beta}-catenin crosstalk leads to tumor cell death. Clinical Cancer Research, 15, 7453–7455.PubMedCrossRefGoogle Scholar
  38. 38.
    Giordano, R. J., Cardo-Vila, M., Salameh, A., Anobom, C. D., Zeitlin, B. D., Hawke, D. H., et al. (2010). From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proceedings of the National Academy of Sciences of the United States of America, 107, 5112–5117.PubMedCrossRefGoogle Scholar
  39. 39.
    Armstrong, L., Saretzki, G., Peters, H., Wappler, I., Evans, J., Hole, N., et al. (2005). Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells, 23, 516–529.PubMedCrossRefGoogle Scholar
  40. 40.
    Indran, I. R., Hande, M. P., & Pervaiz, S. (2011). hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Research, 71, 266–276.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang, C., Przyborski, S., Cooke, M. J., Zhang, X., Stewart, R., Anyfantis, G., et al. (2008). A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells, 26, 850–863.PubMedCrossRefGoogle Scholar
  42. 42.
    Sirma, H., Kumar, M., Meena, J. K., Witt, B., Weise, J. M., Lechel, A., et al. (2011). The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation. Gastroenterology, 141(326–37), 337.Google Scholar
  43. 43.
    Liang, X. J., Chen, X. J., Yang, D. H., Huang, S. M., Sun, G. D., & Chen, Y. P. (2011). Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biology International, 36, 215–221.CrossRefGoogle Scholar
  44. 44.
    He, X. Y., Zheng, Y. M., Lan, J., Wu, Y. H., Yan, J., He, X. N., et al. (2011). Recombinant adenovirus-mediated human telomerase reverse transcriptase gene can stimulate cell proliferation and maintain primitive characteristics in bovine mammary gland epithelial cells. Development, Growth & Differentiation, 53, 312–322.CrossRefGoogle Scholar
  45. 45.
    Tsai, C. C., Chen, C. L., Liu, H. C., Lee, Y. T., Wang, H. W., Hou, L. T., et al. (2010). Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of Biomedical Science, 17, 64.PubMedCrossRefGoogle Scholar
  46. 46.
    Mi, H. W., Lee, M. C., Fu, E., Chow, L. P., & Lin, C. P. (2011). Highly efficient multipotent differentiation of human periodontal ligament fibroblasts induced by combined BMP4 and hTERT gene transfer. Gene Therapy, 18, 452–461.PubMedCrossRefGoogle Scholar
  47. 47.
    Asumda, F. Z., & Chase, P. B. (2011). Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biology, 12, 44.PubMedCrossRefGoogle Scholar
  48. 48.
    Tang, J., Wang, Z., Li, X., Li, J., & Shi, H. (2008). Human telomerase reverse transcriptase expression correlates with vascular endothelial growth factor-promoted tumor cell proliferation in prostate cancer. Artificial Cells, Blood Substitutes and Biotechnology, 36, 83–93.CrossRefGoogle Scholar
  49. 49.
    Kirkpatrick, K. L., Newbold, R. F., & Mokbel, K. (2004). The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. Journal of Carcinogenesis, 3, 1.PubMedCrossRefGoogle Scholar
  50. 50.
    Bermudez, Y., Yang, H., Saunders, B. O., Cheng, J. Q., Nicosia, S. V., & Kruk, P. A. (2007). VEGF- and LPA-induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecologic Oncolcology, 106, 526–537.CrossRefGoogle Scholar
  51. 51.
    Zhou, L., Zheng, D., Wang, M., & Cong, Y. S. (2009). Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity. Biochemical and Biophysical Research Communications, 386, 739–743.PubMedCrossRefGoogle Scholar
  52. 52.
    Shkreli, M., Sarin, K. Y., Pech, M. F., Papeta, N., Chang, W., Brockman, S. A., et al. (2012). Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nature Medicine, 18, 111–119.CrossRefGoogle Scholar
  53. 53.
    Strong, M. A., Vidal-Cardenas, S. L., Karim, B., Yu, H., Guo, N., & Greider, C. W. (2011). Phenotypes in mTERT/ and mTERT/ mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Molecular and Cell Biology, 31, 2369–2379.CrossRefGoogle Scholar
  54. 54.
    Donnini, S., Solito, R., Cetti, E., Corti, F., Giachetti, A., Carra, S., et al. (2010). Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. The Journal of the Federation of American Societies for Experimental Biology, 24, 2385–2395.Google Scholar
  55. 55.
    Minamino, T., & Komuro, I. (2008). Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nature Reviews Cardiology, 5, 637–648.Google Scholar
  56. 56.
    Zaccagnini, G., Gaetano, C., Della, P. L., Nanni, S., Grasselli, A., Mangoni, A., et al. (2005). Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischemia. Journal of Biological Chemistry, 280, 14790–14798.PubMedCrossRefGoogle Scholar
  57. 57.
    Baumer, Y., Funk, D., & Schlosshauer, B. (2010). Does telomerase reverse transcriptase induce functional de-differentiation of human endothelial cells? Cellular and Molecular Life Sciences, 67, 2451–2465.PubMedCrossRefGoogle Scholar
  58. 58.
    Shi, A. W., Gu, N., Liu, X. M., Wang, X., & Peng, Y. Z. (2011). Ginsenoside rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. Journal of International Medical Research, 39, 1306–1318.PubMedCrossRefGoogle Scholar
  59. 59.
    Chang, E., & Harley, C. B. (1995). Telomere length and replicative aging in human vascular tissues. Proceedings of the National Academy of Sciences of the United States of America, 92, 11190–11194.PubMedCrossRefGoogle Scholar
  60. 60.
    Fadini, G. P., & Avogaro, A. (2010). Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovascular Research, 87, 12–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoder, M. C. (2010). Is endothelium the origin of endothelial progenitor cells? Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1094–1103.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee, S., Chen, T. T., Barber, C. L., Jordan, M. C., Murdock, J., Desai, S., et al. (2007). Autocrine VEGF signaling is required for vascular homeostasis. Cell, 130, 691–703.PubMedCrossRefGoogle Scholar
  63. 63.
    Harley, C. B., Liu, W., Blasco, M., Vera, E., Andrews, W. H., Briggs, L. A., et al. (2011). A natural product telomerase activator as part of a health maintenance program. Rejuvenation Research, 14, 45–56.PubMedCrossRefGoogle Scholar
  64. 64.
    de Jesus, B.B., Schneeberger, K., Vera, E., Tejera, A., Harley, C.B., & Blasco, M.A. (2011). The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell Google Scholar
  65. 65.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRefGoogle Scholar
  66. 66.
    Xie, M., Chen, Q., He, S., Li, B., & Hu, C. (2011). Silencing of the human TERT gene by RNAi inhibits A549 lung adenocarcinoma cell growth in vitro and in vivo. Oncology Reports, 26, 1019–1027.PubMedGoogle Scholar
  67. 67.
    Kotsakis, A., Vetsika, E. K., Christou, S., Hatzidaki, D., Vardakis, N., Aggouraki, D., et al. (2012). Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Annals of Oncology, 23, 442–449.PubMedCrossRefGoogle Scholar
  68. 68.
    Feldser, D. M., Hackett, J. A., & Greider, C. W. (2003). Telomere dysfunction and the initiation of genome instability. Nature Reviews Cancer, 3, 623–627.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Fernando P. Hartwig
    • 1
  • Fernanda Nedel
    • 2
  • Tiago V. Collares
    • 1
  • Sandra B. C. Tarquinio
    • 3
  • Jacques E. Nör
    • 4
  • Flávio F. Demarco
    • 5
  1. 1.Biotechnology Unit, Technology Development CenterFederal University of PelotasRio Grande do SulBrazil
  2. 2.Post-Graduate Program in Dentistry and Biotechnology Unit, Technology Development CenterFederal University of PelotasRio Grande do SulBrazil
  3. 3.Post-Graduate Program in DentistryFederal University of PelotasRio Grande do SulBrazil
  4. 4.Department of Cardiology, Restorative Sciences, and EndodonticsUniversity of MichiganAnn ArborUSA
  5. 5.Post-Graduate Program in DentistryFederal University of PelotasRio Grande do SulBrazil

Personalised recommendations