Stem Cell Reviews and Reports

, Volume 8, Issue 3, pp 953–962 | Cite as

Stem Cell Therapy in Spinal Cord Injury: In Vivo and Postmortem Tracking of Bone Marrow Mononuclear or Mesenchymal Stem Cells

  • Mevci OzdemirEmail author
  • Ayhan Attar
  • Isinsu Kuzu
  • Murat Ayten
  • Enver Ozgencil
  • Melih Bozkurt
  • Klara Dalva
  • Duygu Uckan
  • Emine Kılıc
  • Tanzer Sancak
  • Yucel Kanpolat
  • Meral BeksacEmail author



The aim of this study was to address the question of whether bone marrow-originated mononuclear cells (MNC) or mesenchymal stem cells (MSC) induce neural regeneration when implanted intraspinally.

Materials and Methods

The study design included 4 groups of mice: Group 1, non-traumatized control group; Groups 2, 3 and 4 spinal cord traumatized mice with 1 g force Tator clips, which received intralesionally either no cellular implants (Group 2), luciferase (Luc) (+) MNC (Group 3) or MSC (Group 4) obtained from CMV-Luc or beta-actin Luc donor transgenic mice. Following the surgery until decapitation, periodical radioluminescence imaging (RLI) and Basso Mouse Scale (BMS) evaluations was performed to monitor neural activity. Postmortem immunohistochemical techniques were used to analyze the fate of donor type implanted cells.


All mice of Groups 3 and 4 showed various degrees of improvement in the BMS scores, whereas there was no change in Groups 1 and 2. The functional improvement was significantly better in Group 4 compared to Group 3 (18 vs 8, p = 0.002). The immunohistochemical staining demonstrated GFP+Luc+ neuronal/glial cells that were also positive with one or more of these markers: nestin, myelin associated glycoprotein, microtubule associated protein or myelin oligodendrocyte specific protein, which is considered as indicator of donor type neuronal regeneration. Frequency of donor type neuronal cells; Luc + signals and median BMS scores were observed 48–64 % and 68–72 %; 44–80 %; 8 and 18 within Groups III and IV respectively.


MSCs were more effective than MNC in obtaining neuronal recovery. Substantial but incomplete functional improvement was associated with donor type in vivo imaging signals more frequently than the number of neuronal cells expressing donor markers in spinal cord sections in vitro. Our results are in favor of functional recovery arising from both donor MSC and MNCs, contributing to direct neuronal regeneration and additional indirect mechanisms.


Mesenchymal stem cell Regeneration Spinal cord Stem cell Trauma 



This study was supported by grants from the Turkish Scientific Research Council TUBİTAK, Ankara University Research Resources (SBAG) and the Turkish Academy of Sciences.

Conflicts of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Duda, J., Karimi, M., Negrin, R. S. (2007). Methods for ımaging cells fates in hematopoiesis. In M. Beksac (Ed.), Bone marrow and stem cell transplantation (pp. 17–34).Google Scholar
  2. 2.
    Leeb, C., Jurga, M., McGuckin, C., Moriggl, R., & Kenner, L. (2010). Promising new sources for pluripotent stem cells. Stem Cell Reviews and Reports, 6(1), 15–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Rivlin, A. S., & Tator, C. H. (1978). Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surgical Neurology, 10(1), 39–43.Google Scholar
  4. 4.
    Zurita, M., Otero, L., Aguayo, C., Bonilla, C., Ferreira, E., Parajón, A., et al. (2010). Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy, 12(4), 522–537.PubMedCrossRefGoogle Scholar
  5. 5.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  6. 6.
    Parr, A. M., Tator, C. H., & Keating, A. (2007). Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation, 40(7), 609–619.PubMedCrossRefGoogle Scholar
  7. 7.
    Wislet-Gendebien, S., Bruyère, F., Hans, G., Leprince, P., Moonen, G., & Rogister, B. (2004). Nestinpositive mesenchymal stem cells favour the astroglial lineage in neuralprogenitors and stem cells by releasing active BMP4. BMC Neuroscience, 15, 5–33.Google Scholar
  8. 8.
    Lee, J., Kuroda, S., Shichinohe, H., Ikeda, J., Seki, T., Hida, K., et al. (2003). Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology, 23(3), 169–180.PubMedCrossRefGoogle Scholar
  9. 9.
    Yano, S., Kuroda, S., Lee, J. B., Shichinohe, H., Seki, T., Ikeda, J., et al. (2005). In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. Journal of Neurotrauma, 22(8), 907–918.PubMedCrossRefGoogle Scholar
  10. 10.
    Koda, M., Okada, S., Nakayama, T., Koshizuka, S., Kamada, T., Nishio, Y., et al. (2005). Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport, 16(16), 1763–1767.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, Y., Mah, N., Prigione, A., Wolfrum, K., Andrade-Navarro, M. A., & Adjaye, J. (2010). A transcriptional roadmap to the ınduction of pluripotency in somatic cells. Stem Cell Reviews and Reports, 6(2), 282–296.PubMedCrossRefGoogle Scholar
  12. 12.
    Chopp, M., & Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurology, 1(2), 92–100.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, S., Suzuki, Y., Ejiri, Y., Noda, T., Bai, H., Kitada, M., et al. (2003). Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. Journal of Neuroscience Research, 72(3), 343–351.PubMedCrossRefGoogle Scholar
  14. 14.
    Scheper, W., & Copray, S. (2009). The molecular mechanism of ınduced pluripotency: a two-stage switch. Stem Cell Reviews and Reports, 5(3), 204–223.PubMedCrossRefGoogle Scholar
  15. 15.
    Moviglia, G. A., Fernandez, V. R., Brizuela, J. A., Saslavsky, J., Vrsalovic, F., Varela, G., et al. (2006). Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy, 8(3), 202–209.PubMedCrossRefGoogle Scholar
  16. 16.
    De Haro, J., Zurita, M., Ayllon, L., & Vaquero, J. (2005). Detection of 111 ınoxine-labeled bone marrow stromal cells after intravenous or intralesional administration in chronic paraplegic rats. Neuroscience Letters, 377(1), 7–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Vaquero, J., Zurita, M., Oya, S., & Santos, M. (2006). Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neuroscience Letters, 398(1–2), 129–134.PubMedCrossRefGoogle Scholar
  18. 18.
    Deng, W., Obrocka, M., Fischer, I., & Prockop, D. J. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 282(1), 148–152.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.PubMedCrossRefGoogle Scholar
  20. 20.
    Syková, E., & Jendlová, P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Annals of the New York Academy of Sciences, 1049, 146–160.PubMedCrossRefGoogle Scholar
  21. 21.
    Wright, K. T., El Masri, W., Osman, A., Chowdhury, J., & Johnson, W. E. (2011). Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells, 29(2), 169–178.PubMedCrossRefGoogle Scholar
  22. 22.
    Hernándeza, J., Torres-Espína, A., & Navarro, X. (2011). Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Current Stem Cell Research & Therapy, 6(3), 273–287.CrossRefGoogle Scholar
  23. 23.
    Dasari, V. R., Spomar, D. G., Cady, C., Gujrati, M., Rao, J. S., & Dinh, D. H. (2007). Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochemical Research, 32(12), 2080–2093.PubMedCrossRefGoogle Scholar
  24. 24.
    Frisen, J., Johansson, C. B., Torok, C., Risling, M., & Lendahl, U. (1995). Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. The Journal of Cell Biology, 131(2), 453–464.PubMedCrossRefGoogle Scholar
  25. 25.
    Sykova, E., Jendelova, P., Urdzikova, L., Lesný, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cellular and Molecular Neurobiology, 26(7–8), 1113–1129.PubMedGoogle Scholar
  26. 26.
    Himes, B. T., Neuhuber, B., Coleman, C., Kushner, R., Swanger, S. A., Kopen, G. C., et al. (2006). Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabilitation and Neural Repair, 20(2), 278–296.PubMedCrossRefGoogle Scholar
  27. 27.
    Lois, C., Hong, E. J., Pease, S., et al. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295, 868–872.PubMedCrossRefGoogle Scholar
  28. 28.
    Hakamata, Y., Tahara, K., Uchida, H., Sakuma, Y., Nakamura, M., Kume, A., et al. (2001). Green fluorescent proteintransgenic rat: a tool for organ transplantation research. Biochemical and Biophysical Research Communications, 286(4), 779–785.PubMedCrossRefGoogle Scholar
  29. 29.
    Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M., & Nagy, A. (1998). Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mechanisms of Development, 76(1–2), 79–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Onifer, S. M., White, L. A., Whittemore, S. R., & Holets, V. R. (1993). In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation in the CNS. Cell Transplantation, 2(2), 131–149.PubMedGoogle Scholar
  31. 31.
    Parr, A. M., Kulbatski, I., Zahir, T., Wang, X., Yue, C., Keating, A., et al. (2008). Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience, 155(3), 760–770.PubMedCrossRefGoogle Scholar
  32. 32.
    Vroemen, M., Aigner, L., Winkler, J., & Weidner, N. (2003). Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. European Journal of Neuroscience, 18(4), 743–751.PubMedCrossRefGoogle Scholar
  33. 33.
    Parr, A. M., Kulbatski, I., & Tator, C. H. (2007). Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. Journal of Neurotrauma, 24(5), 835–845.PubMedCrossRefGoogle Scholar
  34. 34.
    Attar, A., Ayten, M., Ozdemir, M., Ozgencil, E., Bozkurt, M., Kaptanoglu, E., et al. (2011). An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells. Cytotherapy, 13(1), 54–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Inoue, H., Ohsawa, I., Murakami, T., Kimura, A., Hakamata, Y., Sato, Y., et al. (2005). Development of new inbred transgenic strains of rats with LacZ or GFP. Biochemical and Biophysical Research Communications, 329(1), 288–295.PubMedCrossRefGoogle Scholar
  36. 36.
    Mujtaba, T., Han, S. S., Fischer, I., Sandgren, E. P., & Rao, M. S. (2002). Stable expression of the alkaline phosphatase marker gene by neural cells in culture and after transplantation into the CNS using cells derived from a transgenic rat. Experimental Neurology, 174(1), 48–57.PubMedCrossRefGoogle Scholar
  37. 37.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., & Cormier, M. J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111(2), 229–233.PubMedCrossRefGoogle Scholar
  38. 38.
    Ikawa, M., Tanaka, N., Kao, W. W., & Verma, I. M. (2003). Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Molecular Therapy, 8(4), 666–673.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakanishi, T., Kuroiwa, A., Yamada, S., Isotani, A., Yamashita, A., Tairaka, A., et al. (2002). FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics, 80(6), 564–574.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.PubMedCrossRefGoogle Scholar
  41. 41.
    Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., & Enikolopov, G. (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. The Journal of Comparative Neurology, 469(3), 311–324.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mevci Ozdemir
    • 1
    Email author
  • Ayhan Attar
    • 2
  • Isinsu Kuzu
    • 3
  • Murat Ayten
    • 4
  • Enver Ozgencil
    • 5
  • Melih Bozkurt
    • 2
  • Klara Dalva
    • 6
  • Duygu Uckan
    • 7
  • Emine Kılıc
    • 7
  • Tanzer Sancak
    • 8
  • Yucel Kanpolat
    • 9
  • Meral Beksac
    • 6
    Email author
  1. 1.School of Medicine, Department of NeurosurgeryPamukkale UniversityDenizliTurkey
  2. 2.School of Medicine, Department of NeurosurgeryAnkara UniversityAnkaraTurkey
  3. 3.School of Medicine, Department of PathologyAnkara UniversityAnkaraTurkey
  4. 4.Neurosurgery ClinicAnkara Guven HospitalAnkaraTurkey
  5. 5.School of Medicine, Department of AnesthesiologyAnkara UniversityAnkaraTurkey
  6. 6.School of Medicine, Department of HeamatologyAnkara UniversityAnkaraTurkey
  7. 7.School of Medicine, Department of Pediatric HematologyHacettepe UniversityAnkaraTurkey
  8. 8.School of Medicine, Department of RadiologyUfuk UniversityAnkaraTurkey
  9. 9.School of Medicine, Department of Neurosurgery, President, The Turkish Academi of SciencesEmeritus, Ankara UniversityAnkaraTurkey

Personalised recommendations