Stem Cell Reviews and Reports

, Volume 8, Issue 3, pp 755–767 | Cite as

Extrinsic Purinergic Regulation of Neural Stem/Progenitor Cells: Implications for CNS Development and Repair

  • Henning Ulrich
  • Maria P. Abbracchio
  • Geoffrey Burnstock
Article

Abstract

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Keywords

ATP Brain injury Eye Purinergic Regeneration Neural stem cell Transcription factor 

Notes

Acknowledgments

The authors thank Dr Gillian E. Knight for her excellent editorial assistance. H.U. is grateful for grant support by from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico), Brazil. MPA is grateful to Italian Ministero dell’Università e della Ricerca (MIUR; PRIN-/COFIN program Project Prot. 2006059022 and 2008XFMEA3) and to the Fondazione Italiana Sclerosi Multipla (FISM) COD. 2010/R/2 for research support.

Conflict of interests

The authors declare that they have no competing interests or other interests that might be perceived to influence the interpretation of the article.

References

  1. 1.
    Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283, 534–537.PubMedCrossRefGoogle Scholar
  2. 2.
    Shih, C. C., Weng, Y., Mamelak, A., LeBon, T., Hu, M. C., & Forman, S. J. (2001). Identification of a candidate human neurohematopoietic stem-cell population. Blood, 98, 2412–2422.PubMedCrossRefGoogle Scholar
  3. 3.
    Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 3, 986–991.PubMedCrossRefGoogle Scholar
  4. 4.
    Weng, M., & Lee, C. Y. (2011). Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Current Opinion in Neurobiology, 21, 36–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Burnstock, G. (2008). Purinergic signalling and disorders of the central nervous system. Nature Reviews. Drug Discovery, 7, 575–590.PubMedCrossRefGoogle Scholar
  6. 6.
    Trujillo, C. A., Schwindt, T. T., Martins, A. H., Alves, J. M., Mello, L. E., & Ulrich, H. (2009). Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry. Part A, 75, 38–53.CrossRefGoogle Scholar
  7. 7.
    Burnstock, G., & Ulrich, H. (2011). Purinergic signalling in embryonic and stem cell development. Cellular and Molecular Life Sciences, 68, 1369–1394.PubMedCrossRefGoogle Scholar
  8. 8.
    Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.PubMedGoogle Scholar
  9. 9.
    Liu, J., Solway, K., Messing, R. O., & Sharp, F. R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. Journal of Neuroscience, 18, 7768–7778.PubMedGoogle Scholar
  10. 10.
    Huttmann, K., Sadgrove, M., Wallraff, A., Hinterkeuser, S., Kirchhoff, F., Steinhauser, C., et al. (2003). Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: Functional and immunocytochemical analysis. European Journal of Neuroscience, 18, 2769–2778.PubMedCrossRefGoogle Scholar
  11. 11.
    Burnstock, G., Krügel, U., Abbracchio, M. P., & Illes, P. (2011). Purinergic signalling: From normal behaviour to pathological brain function. Progress in Neurobiology, 95, 229–274.PubMedCrossRefGoogle Scholar
  12. 12.
    Glaser, T., Cappellari, A., Pillat, M., Iser, I., Wink, M., Battastini, A. et al. (2012). Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signalling, 1–15.Google Scholar
  13. 13.
    Dale, N. (2008). Dynamic ATP signalling and neural development. The Journal of Physiology, 586, 2429–2436.PubMedCrossRefGoogle Scholar
  14. 14.
    Lecca, D., Ceruti, S., Fumagalli, M., & Abbracchio, M. P. (2012). Trophic signalling in glial cells: Functional effects and modulation of cell proliferation, differentiation and death. Purinergic Signalling.Google Scholar
  15. 15.
    Burnstock, G. (1972). Purinergic nerves. Pharmacological Reviews, 24, 509–581.PubMedGoogle Scholar
  16. 16.
    Burnstock, G. (1978). A basis for distinguishing two types of purinergic receptor. In R. W. Straub & L. Bolis (Eds.), Cell membrane receptors for drugs and hormones: A multidisciplinary approach (pp. 107–118). New York: Raven.Google Scholar
  17. 17.
    Abbracchio, M. P., Burnstock, G., Boeynaems, J.-M., Barnard, E. A., Boyer, J. L., Kennedy, C., et al. (2006). International Union of Pharmacology. Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews, 58, 281–341.PubMedCrossRefGoogle Scholar
  18. 18.
    Burnstock, G. (2007). Physiology and pathophysiology of purinergic neurotransmission. Physiological Reviews, 87, 659–797.PubMedCrossRefGoogle Scholar
  19. 19.
    Abbracchio, M. P., Burnstock, G., Verkhratsky, A., & Zimmermann, H. (2009). Purinergic signalling in the nervous system: An overview. Trends in Neurosciences, 32, 19–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Neary, J. T., Norenberg, M. D., Yu, A. C. H., Lu, L., Hertz, M. D., & Syková, E. (1992). Signaling by extracellular ATP: Physiological and pathological considerations in neuronal-astrocytic interactions. In S. G. Waxman (Ed.), Progress in brain research. Volume 94 (pp. 145–151). Amsterdam: Elsevier.Google Scholar
  21. 21.
    Abbracchio, M. P., Saffrey, M. J., Höpker, V., & Burnstock, G. (1994). Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience, 59, 67–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbracchio, M. P., & Burnstock, G. (1996). Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends in Neurosciences, 19, 13–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130, 5155–5167.PubMedCrossRefGoogle Scholar
  24. 24.
    Massé, K., Bhamra, S., Eason, R., Dale, N., & Jones, E. A. (2007). Purine-mediated signalling triggers eye development. Nature, 449, 1058–1062.PubMedCrossRefGoogle Scholar
  25. 25.
    Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 9, 110–122.PubMedCrossRefGoogle Scholar
  26. 26.
    Malatesta, P., Hartfuss, E., & Götz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127, 5253–5263.PubMedGoogle Scholar
  27. 27.
    Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–720.PubMedCrossRefGoogle Scholar
  28. 28.
    Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.PubMedCrossRefGoogle Scholar
  29. 29.
    Rakic, P. (2003). Elusive radial glial cells: Historical and evolutionary perspective. Glia, 43, 19–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Rakic, P. (2006). Neuroscience. No more cortical neurons for you. Science, 313, 928–929.PubMedCrossRefGoogle Scholar
  31. 31.
    Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., & Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. Journal of Neuroscience, 22, 3161–3173.PubMedGoogle Scholar
  32. 32.
    Anthony, T. E., Klein, C., Fishell, G., & Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41, 881–890.PubMedCrossRefGoogle Scholar
  33. 33.
    Bittman, K., Owens, D. F., Kriegstein, A. R., & LoTurco, J. J. (1997). Cell coupling and uncoupling in the ventricular zone of developing neocortex. Journal of Neuroscience, 17, 7037–7044.PubMedGoogle Scholar
  34. 34.
    Bittman, K. S., & LoTurco, J. J. (1999). Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cerebral Cortex, 9, 188–195.PubMedCrossRefGoogle Scholar
  35. 35.
    Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C., & Kriegstein, A. R. (2004). Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron, 43, 647–661.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu, X., Hashimoto-Torii, K., Torii, M., Haydar, T. F., & Rakic, P. (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl. Acad. Sci. USA, 105, 11802–11807.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu, X., Hashimoto-Torii, K., Torii, M., Ding, C., & Rakic, P. (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. Journal of Neuroscience, 30, 4197–4209.PubMedCrossRefGoogle Scholar
  38. 38.
    Wiencken-Barger, A. E., Djukic, B., Casper, K. B., & McCarthy, K. D. (2007). A role for Connexin43 during neurodevelopment. Glia, 55, 675–686.PubMedCrossRefGoogle Scholar
  39. 39.
    Santiago, M. F., Alcami, P., Striedinger, K. M., Spray, D. C., & Scemes, E. (2010). The carboxyl-terminal domain of connexin43 is a negative modulator of neuronal differentiation. Journal of Biological Chemistry, 285, 11836–11845.PubMedCrossRefGoogle Scholar
  40. 40.
    Sorgen, P. L., Duffy, H. S., Sahoo, P., Coombs, W., Delmar, M., & Spray, D. C. (2004). Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. Journal of Biological Chemistry, 279, 54695–54701.PubMedCrossRefGoogle Scholar
  41. 41.
    Striedinger, K., Meda, P., & Scemes, E. (2007). Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia, 55, 652–662.PubMedCrossRefGoogle Scholar
  42. 42.
    Fam, S. R., Gallagher, C. J., Kalia, L. V., & Salter, M. W. (2003). Differential frequency dependence of P2Y1- and P2Y2- mediated Ca 2+ signaling in astrocytes. Journal of Neuroscience, 23, 4437–4444.PubMedGoogle Scholar
  43. 43.
    Hung, J., & Colicos, M. A. (2008). Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS One, 3, e3692.PubMedCrossRefGoogle Scholar
  44. 44.
    Alvarez-Buylla, A., Garcia-Verdugo, J. M., & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience, 2, 287–293.PubMedCrossRefGoogle Scholar
  45. 45.
    Berridge, M. J. (1995). Calcium signalling and cell proliferation. Bioessays, 17, 491–500.PubMedCrossRefGoogle Scholar
  46. 46.
    Koledova, Z., Kafkova, L. R., Calabkova, L., Krystof, V., Dolezel, P., & Divoky, V. (2010). Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells and Development, 19, 181–194.PubMedCrossRefGoogle Scholar
  47. 47.
    Becker, K. A., Ghule, P. N., Therrien, J. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., et al. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. Journal of Cellular Physiology, 209, 883–893.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahamed, S., Foster, J. S., Bukovsky, A., & Wimalasena, J. (2001). Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Molecular Carcinogenesis, 30, 88–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Córdova-Alarcón, E., Centeno, F., Reyes-Esparza, J., García-Carrancá, A., & Garrido, E. (2005). Effects of HRAS oncogene on cell cycle progression in a cervical cancer-derived cell line. Archives of Medical Research, 36, 311–316.PubMedCrossRefGoogle Scholar
  50. 50.
    Hideshima, T., Nakamura, N., Chauhan, D., & Anderson, K. C. (2001). Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene, 20, 5991–6000.PubMedCrossRefGoogle Scholar
  51. 51.
    Delmas, C., Manenti, S., Boudjelal, A., Peyssonnaux, C., Eychène, A., & Darbon, J. M. (2001). The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3 T3 cells. Journal of Biological Chemistry, 276, 34958–34965.PubMedCrossRefGoogle Scholar
  52. 52.
    Ma, D. K., Ponnusamy, K., Song, M. R., Ming, G. L., & Song, H. (2009). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Molecular Brain, 2, 16.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang, B., Gao, Y., Xiao, Z., Chen, B., Han, J., Zhang, J., et al. (2009). Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neuroscience Letters, 461, 252–257.PubMedCrossRefGoogle Scholar
  54. 54.
    Carreira, B. P., Morte, M. I., Inacio, A., Costa, G., Rosmaninho-Salgado, J., Agasse, F., et al. (2010). Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor. Stem Cells, 28, 1219–1230.PubMedGoogle Scholar
  55. 55.
    Lin, J. H., Takano, T., Arcuino, G., Wang, X., Hu, F., Darzynkiewicz, Z., et al. (2007). Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Developmental Biology, 302, 356–366.PubMedCrossRefGoogle Scholar
  56. 56.
    Khaira, S. K., Pouton, C. W., & Haynes, J. M. (2009). P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. British Journal of Pharmacology, 158, 1922–1931.PubMedCrossRefGoogle Scholar
  57. 57.
    Heo, J. S., & Han, H. J. (2006). ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells, 24, 2637–2648.PubMedCrossRefGoogle Scholar
  58. 58.
    Milosevic, J., Brandt, A., Roemuss, U., Arnold, A., Wegner, F., Schwarz, S. C., et al. (2006). Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: Involvement of MEK/ERK signalling. Journal of Neurochemistry, 99, 913–923.PubMedCrossRefGoogle Scholar
  59. 59.
    Rubini, P., Milosevic, J., Engelhardt, J., Al-Khrasani, M., Franke, H., Heinrich, A., et al. (2009). Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium, 45, 485–498.PubMedCrossRefGoogle Scholar
  60. 60.
    Resende, R. R., Majumder, P., Gomes, K. N., Britto, L. R., & Ulrich, H. (2007). P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-D-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience, 146, 1169–1181.PubMedCrossRefGoogle Scholar
  61. 61.
    Resende, R. R., Britto, L. R., & Ulrich, H. (2008). Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. International Journal of Developmental Neuroscience, 26, 763–777.PubMedCrossRefGoogle Scholar
  62. 62.
    Nunes, P. H., Calaza Kda, C., Albuquerque, L. M., Fragel-Madeira, L., Sholl-Franco, A., & Ventura, A. L. (2007). Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina. International Journal of Developmental Neuroscience, 25, 499–508.PubMedCrossRefGoogle Scholar
  63. 63.
    Sholl-Franco, A., Fragel-Madeira, L., Macama, A. C., Linden, R., & Ventura, A. L. (2010). ATP controls cell cycle and induces proliferation in the mouse developing retina. International Journal of Developmental Neuroscience, 28, 63–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA, 80, 2390–2394.PubMedCrossRefGoogle Scholar
  65. 65.
    Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., & Sanes, J. R. (1990). Neurons and glia arise from a common progenitor in chicken optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA, 87, 458–462.PubMedCrossRefGoogle Scholar
  66. 66.
    Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.PubMedCrossRefGoogle Scholar
  67. 67.
    Alvarez-Buylla, A., & Lim, D. A. (2004). For the long run: Maintaining germinal niches in the adult brain. Neuron, 41, 683–686.PubMedCrossRefGoogle Scholar
  68. 68.
    Mishra, S. K., Braun, N., Shukla, V., Füllgrabe, M., Schomerus, C., Korf, H. W., et al. (2006). Extracellular nucleotide signaling in adult neural stem cells: Synergism with growth factor-mediated cellular proliferation. Development, 133, 675–684.PubMedCrossRefGoogle Scholar
  69. 69.
    Grimm, I., Messemer, N., Stanke, M., Gachet, C., & Zimmermann, H. (2009). Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. Journal of Cell Science, 122, 2524–2533.PubMedCrossRefGoogle Scholar
  70. 70.
    Arthur, D. B., Georgi, S., Akassoglou, K., & Insel, P. A. (2006). Inhibition of apoptosis by P2Y2 receptor activation: Novel pathways for neuronal survival. Journal of Neuroscience, 26, 3798–3804.PubMedCrossRefGoogle Scholar
  71. 71.
    Delic, J., & Zimmermann, H. (2010). Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal, 6, 417–428.PubMedCrossRefGoogle Scholar
  72. 72.
    Povstyan, O. V., Harhun, M. I., & Gordienko, D. V. (2011). Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries. British Journal of Pharmacology, 162, 1618–1638.PubMedCrossRefGoogle Scholar
  73. 73.
    Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.PubMedGoogle Scholar
  74. 74.
    Delarasse, C., Gonnord, P., Galante, M., Auger, R., Daniel, H., Motta, I., et al. (2009). Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. Journal of Neurochemistry, 109, 846–857.PubMedCrossRefGoogle Scholar
  75. 75.
    Orellano, E. A., Rivera, O. J., Chevres, M., Chorna, N. E., & Gonzalez, F. A. (2010). Inhibition of neuronal cell death after retinoic acid-induced down-regulation of P2X7 nucleotide receptor expression. Molecular and Cellular Biochemistry, 337, 83–99.PubMedCrossRefGoogle Scholar
  76. 76.
    Franke, H., Günther, A., Grosche, J., Schmidt, R., Rossner, S., Reinhardt, R., et al. (2004). P2X7 receptor expression after ischemia in the cerebral cortex of rats. Journal of Neuropathology and Experimental Neurology, 63, 686–699.PubMedGoogle Scholar
  77. 77.
    Scemes, E., Duval, N., & Meda, P. (2003). Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. Journal of Neuroscience, 23, 11444–11452.PubMedGoogle Scholar
  78. 78.
    Hassenklöver, T., Kurtanska, S., Bartoszek, I., Junek, S., Schild, D., & Manzini, I. (2008). Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium. Glia, 56, 1614–1624.PubMedCrossRefGoogle Scholar
  79. 79.
    Hassenklöver, T., Schwartz, P., Schild, D., & Manzini, I. (2009). Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors. Stem Cells, 27, 2022–2031.PubMedCrossRefGoogle Scholar
  80. 80.
    Cohen, J. E., & Fields, R. D. (2008). Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biology, 4, 43–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Ciana, P., Fumagalli, M., Trincavelli, M. L., Verderio, C., Rosa, P., Lecca, D., et al. (2006). The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 25, 4615–4627.PubMedCrossRefGoogle Scholar
  82. 82.
    Lecca, D., Trincavelli, M. L., Gelosa, P., Sironi, L., Ciana, P., Fumagalli, M., et al. (2008). The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One, 3, e3579.PubMedCrossRefGoogle Scholar
  83. 83.
    Fumagalli, M., Daniele, S., Lecca, D., Lee, P. R., Parravicini, C., Fields, R. D., et al. (2011). Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. Journal of Biological Chemistry, 286, 10593–10604.PubMedCrossRefGoogle Scholar
  84. 84.
    Schwindt, T. T., Trujillo, C. A., Negraes, P. D., Lameu, C., & Ulrich, H. (2011). Directed differentiation of neural progenitors into neurons is accompanied by altered expression of P2X purinergic receptors. Journal of Molecular Neuroscience, 44, 141–146.PubMedCrossRefGoogle Scholar
  85. 85.
    Gao, L., Cao, L., Qui, Y., Su, Z., Burnstock, G., Xiang, Z., et al. (2010). Blocking P2X receptors can inhibit the injury-induced proliferation of olfactory epithelium progenitor cells in adult mouse. International Journal of Pediatric Otorhinolaryngology, 74, 747–751.PubMedCrossRefGoogle Scholar
  86. 86.
    Cheung, K.-K., Chan, W. Y., & Burnstock, G. (2005). Expression of P2X receptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience, 133, 937–945.PubMedCrossRefGoogle Scholar
  87. 87.
    Díaz-Hernandez, M., del Puerto, A., Díaz-Hernandez, J. I., Diez-Zaera, M., Lucas, J. J., Garrido, J. J., et al. (2008). Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. Journal of Cell Science, 121, 3717–3728.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu, P. Y., Lin, Y. C., Chang, C. L., Lu, H. T., Chin, C. H., Hsu, T. T., et al. (2009). Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cellular Signalling, 21, 881–891.PubMedCrossRefGoogle Scholar
  89. 89.
    Raffaghello, L., Chiozzi, P., Falzoni, S., Di Virgilio, F., & Pistoia, V. (2006). The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Research, 66, 907–914.PubMedCrossRefGoogle Scholar
  90. 90.
    Yuahasi, K. K., Demasi, M. A., Tamajusuku, A. S., Lenz, G., Sogayar, M. C., Fornazari, M., et al. (2012). Regulation of neurogenesis and gliogenesis of retinoic acid-induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference. International Journal of Developmental Neuroscience 30, 91–97.Google Scholar
  91. 91.
    Burnstock, G., & Verkhratsky, A. (2009). Evolutionary origins of the purinergic signalling system. Acta Physiologica, 195, 415–447.PubMedCrossRefGoogle Scholar
  92. 92.
    Flint, A. C., & Kriegstein, A. R. (1997). Mechanisms underlying neuronal migration disorders and epilepsy. Current Opinion in Neurology, 10, 92–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Manzini, M. C., & Walsh, C. A. (2011). What disorders of cortical development tell us about the cortex: One plus one does not always make two. Current Opinion in Genetics & Development, 21, 333–339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Henning Ulrich
    • 1
  • Maria P. Abbracchio
    • 2
  • Geoffrey Burnstock
    • 3
  1. 1.Departamento de BioquimicaInstituto de Quimica, Universidade de São PauloSão PauloBrazil
  2. 2.Department of Pharmacological SciencesLaboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of MilanMilanItaly
  3. 3.Autonomic Neuroscience CentreUniversity College Medical SchoolLondonUK

Personalised recommendations