Stem Cell Reviews and Reports

, Volume 9, Issue 3, pp 339–349 | Cite as

Comparison of Cardiac Stem Cells and Mesenchymal Stem Cells Transplantation on the Cardiac Electrophysiology in Rats with Myocardial Infarction

  • Shao-Xin Zheng
  • Yin-Lun Weng
  • Chang-Qing Zhou
  • Zhu-Zhi Wen
  • Hui Huang
  • Wei Wu
  • Jing-Feng Wang
  • Tong Wang
Article

Abstract

Introduction

Whether transplanted cardiac stem cells (CSCs) and mesenchymal stem cells (MSCs) improved ventricular fibrillation threshold (VFT) similarly is still unclear. We sought to compare the effects of the CSC and MSC transplantation on the electrophysiological characteristics and VFT in rats with myocardial infarction (MI).

Methods

MI was induced in 30 male Sprague–Dawley rats. Two weeks later, animals were randomized to receive 5 × 106 CSCs labeled with PKH26 in PBS or 5 × 106 MSCs labeled with PKH26 in phosphate buffer solution(PBS) or PBS alone injection into the infarcted anterior ventricular free wall. Six weeks after the injection, electrophysiological characteristics and VFT were measured. Labeled CSCs and MSCs were observed in 5 μm cryostat sections from each heart.

Results

Malignant ventricular arrhythmias were significantly (P = 0.0055) less inducible in the CSC group than the MSC group. The VFTs were improved in the CSC group compared with the MSC group. Labeled CSCs and MSCs were identified in the infarct zone and infarct marginal zone. Labeled CSCs expressed Connexin-43, von Willebrand factor, α-smooth muscle actin and α-sarcomeric actin,while the Labeled MSCs expressed von Willebrand factor, α-smooth muscle actin and α-sarcomeric actin in vivo.

Conclusions

After 6 weeks of cell transplantation, CSCs are superior to MSCs in modulating the electrophysiological abnormality and improving the VFT in rats with MI. CSCs and MSCs express markers that suggest muscle, endothelium and vascular smooth muscle phenotypes in vivo, but MSCs rarely express Connexin-43.

Keywords

Cardiac stem cells Mesenchymal stem cells Electrophysiological characteristics Myocardial infarction Ventricular fibrillation threshold 

Abbreviations

ART

Activation recovery time

ARTd

ART dispersion

ARTc

Correct ART

ARTcd

ARTc dispersion

Cx43

Connexin-43

CSCs

Cardiac stem cells

MSCs

Mesenchymal stem cells

MI

Myocardial infarction

PBS

Phosphate buffer solution

VT

Ventricular tachycardia

VFT

Ventricular fibrillation threshold

VF

Ventricular fibrillation

Notes

Funding

This study supported by National Natural Science Foundation of China (No: 81070125 and No: 30971262), Natural Science Foundation of Guangdong Province (No: 8151008901000119) and Science and Technology Foundation in Guangdong Province (No: 2010B031600032). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author details

The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.

Authors’ contributions

TW, SXZ, YLW and JFW contributed to the conception and design of the study protocol. SXZ, YLW, CQZ and ZZW participated in the coordination of the study and data collection. WW and HH contributed to the analysis and interpretation of the data. All authors were involved in drafting the manuscript or revising it critically for important intellectual content. All authors read and gave final approval of the present version of the manuscript to be published.

Competing Interests

The authors have not disclosed any potential conflicts of interest.

References

  1. 1.
    Oettgen, P., Boyle, A. J., Schulman, S. P., & Hare, J. M. (2006). Cardiac stem cell therapy; need for optimization of efficacy and safety monitoring. Circulation, 14, 353–358.CrossRefGoogle Scholar
  2. 2.
    Herrmann, J. L., Abarbanell, A. M., Weil, B. R., Wang, Y., Wang, M., Tan, J., & Meldrum, D. R. (2009). Cell-based therapy for ischemic heart disease: a clinical update. The Annals of Thoracic Surgery, 88, 1714–1722.CrossRefPubMedGoogle Scholar
  3. 3.
    LaPar, D. J., Kron, I. L., & Yang, Z. (2009). Stem cell therapy for ischemic heart disease: where are we? Current Opinion in Organ Transplantation, 14, 79–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Durrani, S., Konoplyannikov, M., Ashraf, M., & Haider, K. H. (2010). Skeletal myoblasts for cardiac repair. Regenerative Medicine, 5(6), 919–932.CrossRefPubMedGoogle Scholar
  5. 5.
    Menasché, P. (2009). Cell therapy: results in cardiology. Bulletin de l’Académie Nationale de Médecine, 193, 559–568.PubMedGoogle Scholar
  6. 6.
    Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W., Süselbeck, T., Assmus, B., Tonn, T., Dimmeler, S., Zeiher, A. M., & Investigators, R. E. P. A. I. R.-A. M. I. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1210–1221.CrossRefPubMedGoogle Scholar
  7. 7.
    Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., & Anversa, P. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.CrossRefPubMedGoogle Scholar
  8. 8.
    Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofimova, I., Siggins, R. W., Lecapitaine, N., Cascapera, S., Beltrami, A. P., D’Alessandro, D. A., Zias, E., Quaini, F., Urbanek, K., Michler, R. E., Bolli, R., Kajstura, J., Leri, A., & Anversa, P. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14068–14073.CrossRefPubMedGoogle Scholar
  9. 9.
    Zheng, S., Zhou, C., Weng, Y., Huang, H., Wu, H., Huang, J., Wu, W., Sun, S., Wang, J., Tang, W., & Wang, T. (2011). Improvements of cardiac electrophysiologic stability and ventricular fibrillation threshold in rats with myocardial infarction treated with cardiac stem cells. Critical Care Medicine, 39(5), 1082–1088.CrossRefPubMedGoogle Scholar
  10. 10.
    Kajstura, J., Urbanek, K., Rota, M., Bearzi, C., Hosoda, T., Bolli, R., Anversa, P., & Leri, A. (2008). Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 45, 505–513.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, T., Tang, W., Sun, S., Ristagno, G., Huang, Z., & Weil, M. H. (2007). Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Critical Care Medicine, 35, 2587–2593.CrossRefPubMedGoogle Scholar
  12. 12.
    Mias, C., Lairez, O., Trouche, E., Roncalli, J., Calise, D., Seguelas, M. H., Ordener, C., Piercecchi-Marti, M. D., Auge, N., Salvayre, A. N., Bourin, P., Parini, A., & Cussac, D. (2009). Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells, 27(11), 2734–2743.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, F., & Pasumarthi, K. B. (2008). Embryonic stem cell transplantation: promise and progress in the treatment of heart disease. BioDrugs, 22(6), 361–374.CrossRefPubMedGoogle Scholar
  14. 14.
    Tang, X. L., Rokosh, G., Sanganalmath, S. K., Yuan, F., Sato, H., Mu, J., Dai, S., Li, C., Chen, N., Peng, Y., Dawn, B., Hunt, G., Leri, A., Kajstura, J., Tiwari, S., Shirk, G., Anversa, P., & Bolli, R. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 121(2), 293–305.CrossRefPubMedGoogle Scholar
  15. 15.
    Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., Marbán, E., & Abraham, M. R. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113, 1832–1841.CrossRefPubMedGoogle Scholar
  16. 16.
    Mills, W. R., Mal, N., Kiedrowski, M. J., Unger, R., Forudi, F., Popovic, Z. B., Penn, M. S., & Laurita, K. R. (2007). Stem cell therapy enhances electrical viability in myocardial infarction. Journal of Molecular and Cellular Cardiology, 42(2), 304–314.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang, Y. M., Hartzell, C., Narlow, M., & Dudley, S. C., Jr. (2002). Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation, 106, 1294–1299.CrossRefPubMedGoogle Scholar
  18. 18.
    Chamuleau, S. A., Vrijsen, K. R., Rokosh, D. G., Tang, X. L., Piek, J. J., & Bolli, R. (2009). Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells. Netherlands Heart Journal, 17, 199–207.CrossRefPubMedGoogle Scholar
  19. 19.
    Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., Maat, A. P., & Serruys, P. W. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42, 2063–2069.CrossRefPubMedGoogle Scholar
  20. 20.
    Fernandes, S., Amirault, J. C., Lande, G., Nguyen, J. M., Forest, V., Bignolais, O., Lamirault, G., Heudes, D., Orsonneau, J. L., Heymann, M. F., Charpentier, F., & Lemarchand, P. (2006). Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovascular Research, 69, 348–358.CrossRefPubMedGoogle Scholar
  21. 21.
    Parker, C. (2007). Ethics for embryos. Journal of Medical Ethics, 33(10), 614–616.CrossRefPubMedGoogle Scholar
  22. 22.
    Li, Q., Turdi, S., Thomas, D. P., Zhou, T., & Ren, J. (2010). Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Toxicology Letters, 195(2–3), 119–126.CrossRefPubMedGoogle Scholar
  23. 23.
    Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., & Marbán, E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.CrossRefPubMedGoogle Scholar
  24. 24.
    Hosoda, T., Kajstura, J., Leri, A., & Anversa, P. (2010). Mechanisms of myocardial regeneration. Circulation Journal, 74, 13–17.CrossRefPubMedGoogle Scholar
  25. 25.
    Kajstura, J., Gurusamy, N., Ogórek, B., Goichberg, P., Clavo-Rondon, C., Hosoda, T., D’Amario, D., Bardelli, S., Beltrami, A. P., Cesselli, D., Bussani, R., del Monte, F., Quaini, F., Rota, M., Beltrami, C. A., Buchholz, B. A., Leri, A., & Anversa, P. (2010). Myocyte turnover in the aging human heart. Circulation Research, 107, 1374–1386.CrossRefPubMedGoogle Scholar
  26. 26.
    Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogórek, B., Ferreira-Martins, J., Goichberg, P., Rondon-Clavo, C., Sanada, F., D’Amario, D., Rota, M., Del Monte, F., Orlic, D., Tisdale, J., Leri, A., & Anversa, P. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107, 305–315.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang, T., Tang, W., Sun, S., Ristagno, G., Xu, T., & Weil, M. H. (2009). Improved outcomes of cardiopulmonary resuscitation in rats with myocardial infarction treated with allogenic bone marrow mesenchymal stem cells. Critical Care Medicine, 37(3), 833–839.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, T., Tang, W., Sun, S., Wan, Z., Xu, T., Huang, Z., & Weil, M. H. (2009). Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. Journal of Molecular and Cellular Cardiology, 46, 378–384.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang, T., Tang, W., Sun, S., Xu, T., Wang, H., Guan, J., Huang, Z., & Weil, M. H. (2008). Intravenous infusion of bone marrow mesenchymal stem cells improves brain function after resuscitation from cardiac arrest. Critical Care Medicine, 36, S486–S491.CrossRefPubMedGoogle Scholar
  30. 30.
    Xia, Y., Kongstad, O., Hertervig, E., Li, Z., Holm, M., Olsson, B., & Yuan, S. (2005). Activation recovery time measurements in evaluation of global sequence and dispersion of ventricular repolarization. Journal of Electrocardiology, 38, 28–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang, H., Tang, W., Ristagno, G., Li, Y., Sun, S., Wang, T., & Weil, M. H. (2009). The potential mechanisms of reduced incidence of ventricular fibrillation as the presenting rhythm in sudden cardiac arrest. Critical Care Medicine, 37, 26–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F., Esposito, G., Tokunou, T., Urbanek, K., Hosoda, T., Rota, M., Anversa, P., Leri, A., Lee, R. T., & Kajstura, J. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120, 876–887.CrossRefPubMedGoogle Scholar
  33. 33.
    Shyu, K. Y., Wang, B. W., Hung, H. F., Chang, C. C., & Shih, D. T. (2006). Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Journal of Biomedical Science, 13, 47–58.CrossRefPubMedGoogle Scholar
  34. 34.
    Sun, Y. (2009). Myocardial repair/remodeling following infarction: roles of local factors. Cardiovascular Research, 81, 482–490.CrossRefPubMedGoogle Scholar
  35. 35.
    Sharma, R., & Raghubir, R. (2007). Stem cell therapy: a hope for dying hearts. Stem Cells and Development, 16, 517–536.CrossRefPubMedGoogle Scholar
  36. 36.
    Menasché, P. (2009). Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation, 119, 2735–2740.CrossRefPubMedGoogle Scholar
  37. 37.
    Ly, H. Q., & Nattel, S. (2009). Stem cells are not proarrhythmic: letting the genie out of the bottle. Circulation, 119, 1824–1831.CrossRefPubMedGoogle Scholar
  38. 38.
    Makkar, R. R., Lill, M., & Chen, P. S. (2003). Stem cell therapy for myocardial repair: is it arrhythmogenic? Journal of the American College of Cardiology, 42, 2070–2072.CrossRefPubMedGoogle Scholar
  39. 39.
    Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A., & Ogawa, S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103, 697–705.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang, T., Xu, Z., Jiang, W., & Ma, A. (2006). Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. International Journal of Cardiology, 109, 74–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., Marshak, D. R., & Flake, A. W. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 6, 1282–1286.CrossRefPubMedGoogle Scholar
  42. 42.
    Piao, H., Youn, T. J., Kwon, J. S., Kim, Y. H., Bae, J. W., Bora-Sohn, S., Kim, D. W., Cho, M. C., Lee, M. M., & Park, Y. B. (2005). Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. European Journal of Heart Failure, 7, 730–738.CrossRefPubMedGoogle Scholar
  43. 43.
    Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., Dong, A., Du, Y., Huang, X., Wang, J., Lei, X., & Zheng, X. (2006). Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflügers Archiv, 453, 43–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., Pattany, P. M., Zambrano, J. P., Hu, Q., McNiece, I., Heldman, A. W., & Hare, J. M. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.CrossRefPubMedGoogle Scholar
  45. 45.
    Berry, M. F., Engler, A. J., Woo, Y. J., Pirolli, T. J., Bish, L. T., Jayasankar, V., Morine, K. J., Gardner, T. J., Discher, D. E., & Sweeney, H. L. (2006). Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. American Journal of Physiology - Heart and Circulatory Physiology, 290, H2196–H2203.CrossRefPubMedGoogle Scholar
  46. 46.
    Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2010). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043.CrossRefGoogle Scholar
  47. 47.
    Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., & Kloner, R. A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223.CrossRefPubMedGoogle Scholar
  48. 48.
    Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S. C., Parker, T. G., Backx, P. H., & Keating, A. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26, 2884–2892.CrossRefPubMedGoogle Scholar
  49. 49.
    Gui, R., Li, H. Y., Sun, X. L., & Lau, C. P. (2005). Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells, 23, 371–382.CrossRefGoogle Scholar
  50. 50.
    Heubach, J. F., Graf, E. M., Leut, H. J., Bock, M., Balana, B., Zahanich, I., Christ, T., Boxberger, S., Wettwer, E., & Ravens, U. (2004). Electrophysilogical properties of human mesenchymal stem cells. The Journal of Physiology, 554, 659–672.CrossRefPubMedGoogle Scholar
  51. 51.
    Smith, R. R., Barile, L., Messina, E., & Marbán, E. (2008). Stem cells in the heart: what’s the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm, 5, 880–887.CrossRefPubMedGoogle Scholar
  52. 52.
    Young, B., Kim, I. K., Lee, M. H., Yoo, K. J., & Kim, S. S. (2007). Bone marrow mononuclear stem cells transplanted in rat infarct myocardium improved the electrical conduction without evidence of proarrhythmic effects. Yonsei Medical Journal, 48(5), 754–764.CrossRefGoogle Scholar
  53. 53.
    Price, M. J., Chou, C. C., Frantzen, M., Miyamoto, T., Kar, S., Lee, S., Shah, P. K., Martin, B. J., Lill, M., Forrester, J. S., Chen, P. S., & Makkar, R. R. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111, 231–239.CrossRefPubMedGoogle Scholar
  54. 54.
    Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., Kellner, J., Zviman, M. M., Hatzistergos, K. E., Detrick, B., Conte, J. V., McNiece, I., Steenbergen, C., Lardo, A. C., & Hare, J. M. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30, 2722–2732.CrossRefPubMedGoogle Scholar
  55. 55.
    Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Jr., Reisman, M. A., Schaer, G. L., & Sherman, W. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.CrossRefPubMedGoogle Scholar
  56. 56.
    Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85, 1373–1416.CrossRefPubMedGoogle Scholar
  57. 57.
    Dawn, B., Stein, A. B., Urbanek, K., Rota, M., Whang, B., Rastaldo, R., Torella, D., Tang, X. L., Rezazadeh, A., Kajstura, J., Leri, A., Hunt, G., Varma, J., Prabhu, S. D., Anversa, P., & Bolli, R. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102, 3766–3771.CrossRefPubMedGoogle Scholar
  58. 58.
    de Boer, T. P., van Veen, T. A., Jonsson, M. K., Kok, B. G., Metz, C. H., Sluijter, J. P., Doevendans, P. A., de Bakker, J. M., Goumans, M. J., & van der Heyden, M. A. (2010). Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. Journal of Molecular and Cellular Cardiology, 48, 254–260.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang, D., Zhang, F., Shen, W., Chen, M., Yang, B., Zhang, Y., & Cao, K. (2010). Mesenchymal stem cell injection ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. International Journal of Cardiology, 152(3), 314–320.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang, D., Shen, W., Zhang, F., Chen, M., Chen, H., & Cao, K. (2010). Connexin 43 promotes survival of mesenchymal stem cells in ischemic heart. Cell Biology International, 34, 415–423.CrossRefPubMedGoogle Scholar
  61. 61.
    van Rijen, H. V., Eckardt, D., Degen, J., Theis, M., Ott, T., Willecke, K., Jongsma, H. J., Opthof, T., & de Bakker, J. M. (2004). Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation, 109, 1048–1055.CrossRefPubMedGoogle Scholar
  62. 62.
    Malliaras, K., Li, T. S., Luthringer, D., Terrovitis, J., Cheng, K., Chakravarty, T., Galang, G., Zhang, Y., Schoenhoff, F., Van Eyk, J., Marbán, L., & Marbán, E. (2012). Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation, 125, 100–112.CrossRefPubMedGoogle Scholar
  63. 63.
    Bolli, R., Chugh, A. R., D’Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., Beache, G. M., Wagner, S. G., Leri, A., Hosoda, T., Sanada, F., Elmore, J. B., Goichberg, P., Cappetta, D., Solankhi, N. K., Fahsah, I., Rokosh, D. G., Slaughter, M. S., Kajstura, J., & Anversa, P. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shao-Xin Zheng
    • 1
  • Yin-Lun Weng
    • 2
  • Chang-Qing Zhou
    • 2
  • Zhu-Zhi Wen
    • 1
  • Hui Huang
    • 1
  • Wei Wu
    • 1
  • Jing-Feng Wang
    • 1
  • Tong Wang
    • 3
    • 4
  1. 1.Cardiovascular MedicineThe Sun Yat-sen Memorial Hospital of Sun Yat-sen University. Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhouChina
  2. 2.Emergency MedicineThe Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhouChina
  3. 3.Cardiovascular & Emergency MedicineThe Sun Yat-sen Memorial Hospital of Sun Yat-sen University. Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhouChina
  4. 4.Center for Stem Cell Biology and Tissue Engineering, The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations