Stem Cell Reviews and Reports

, Volume 8, Issue 2, pp 597–608

Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View

Article

Abstract

Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem cells, to analyze the “programming” process which these cells undergo as they emerge from the large populations of embryonic progenitors. This review intends to summarize pertinent data on vertebrate intestinal stem cell biology, to then take a closer look at recent studies of intestinal stem cell development in Drosophila. Here, stem cell pools and their niche environment consist of relatively small numbers of cells, and questions concerning the pattern of cell division, niche-stem cell contacts, or differentiation can be addressed at the single cell level. Likewise, it is possible to analyze the emergence of stem cells during development more easily than in vertebrate systems: where in the embryo do stem cells arise, what structures in their environment do they interact with, and what signaling pathways are active sequentially as a result of these interactions. Given the high degree of conservation among genetic mechanisms controlling stem cell behavior in all animals, findings in Drosophila will provide answers that inform research in the vertebrate stem cell field.

Keywords

Intestine Stem cell Development Signaling Vertebrate Drosophila 

References

  1. 1.
    Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: a comparative view. Genes & Development, 21(23), 3044–60.CrossRefGoogle Scholar
  2. 2.
    Xie, T., Kawase, E., Kirilly, D., & Wong, M. D. (2005). Intimate relationships with their neighbors: tales of stem cells in Drosophila reproductive systems. Developmental Dynamics, 232(3), 775–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Fuller, M. T., & Spradling, A. C. (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823), 402–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Arai, F., & Suda, T. (2007). Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Annals of the New York Academy of Sciences, 1106, 41–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Levesque, J. P., Helwani, F. M., & Winkler, I. G. (2010). The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 24(12), 1979–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Montuenga, L. M., Guembe, L., Burrell, M. A., et al. (2003). The diffuse endocrine system: from embryogenesis to carcinogenesis. Progress in Histochemistry and Cytochemistry, 38(2), 155–272.PubMedCrossRefGoogle Scholar
  7. 7.
    Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Tian, H., Biehs, B., Warming, S., et al. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478(7368), 255–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Crosnier, C., Stamataki, D., & Lewis, J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Reviews Genetics, 7(5), 349–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Scoville, D. H., Sato, T., He, X. C., & Li, L. (2008). Current view: intestinal stem cells and signaling. Gastroenterology, 134(3), 849–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Bjerknes, M., & Cheng, H. (2006). Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Developments in Biologicals, 300(2), 722–35.CrossRefGoogle Scholar
  12. 12.
    Powell, D. W., Mifflin, R. C., Valentich, J. D., Crowe, S. E., Saada, J. I., & West, A. B. (1999). Myofibroblasts. II. Intestinal subepithelial myofibroblasts. American Journal of Physiology, 277(2 Pt 1), C183–201.PubMedGoogle Scholar
  13. 13.
    Yen, T. H., & Wright, N. A. (2006). The gastrointestinal tract stem cell niche. Stem Cell Reviews, 2(3), 203–12.PubMedCrossRefGoogle Scholar
  14. 14.
    McLin, V. A., Henning, S. J., & Jamrich, M. (2009). The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology, 136(7), 2074–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Shaker, A., & Rubin, D. C. (2010). Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Translational Research, 156(3), 180–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X., & Mifflin, R. C. (2011). Mesenchymal cells of the intestinal lamina propria. Annual Review of Physiology, 73, 213–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato, T., van Es, J. H., Snippert, H. J., et al. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330), 415–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Haegebarth, A., & Clevers, H. (2009). Wnt signaling, lgr5, and stem cells in the intestine and skin. American Journal of Pathology, 174(3), 715–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Yeung, T. M., Chia, L. A., Kosinski, C. M., & Kuo, C. J. (2011). Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cellular and Molecular Life Sciences, 68(15), 2513–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–38.PubMedGoogle Scholar
  21. 21.
    Lin, G., Xu, N., & Xi, R. (2008). Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature, 455(7216), 1119–23.PubMedCrossRefGoogle Scholar
  22. 22.
    He, X. C., Zhang, J., Tong, W. G., et al. (2004). BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nature Genetics, 36(10), 1117–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Jensen, J., Pedersen, E. E., Galante, P., et al. (2000). Control of endodermal endocrine development by Hes-1. Nature Genetics, 24(1), 36–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., & Lewis, J. (2005). Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development, 132(5), 1093–104.PubMedCrossRefGoogle Scholar
  25. 25.
    van Es, J. H., van Gijn, M. E., Riccio, O., et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 435(7044), 959–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Fre, S., Bardin, A., Robine, S., & Louvard, D. (2011). Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Experimental Cell Research, 317(19), 2740–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Schonhoff, S. E., Giel-Moloney, M., & Leiter, A. B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145(6), 2639–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, C. S., & Kaestner, K. H. (2004). Clinical endocrinology and metabolism. Development of gut endocrine cells. Best Practice & Research. Clinical Endocrinology & Metabolism, 18(4), 453–62.CrossRefGoogle Scholar
  29. 29.
    Hartenstein, V. (2006). The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. Journal of Endocrinology, 190(3), 555–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Henning, S. J., Rubin, D. C., & Shulman, R. J. (1994). Ontogeny of the intestinal mucosa. In L. R. Johnson (Ed.), Physiology of the gastrointestinal tract (pp. 571–610). New York, NY: Raven.Google Scholar
  31. 31.
    Mathan, M., Moxey, P. C., & Trier, J. S. (1976). Morphogenesis of fetal rat duodenal villi. The American Journal of Anatomy, 146(1), 73–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Madara, J. L., Neutra, M. R., & Trier, J. S. (1981). Junctional complexes in fetal rat small intestine during morphogenesis. Developments in Biologicals, 86(1), 170–8.CrossRefGoogle Scholar
  33. 33.
    Kim, B. M., Mao, J., Taketo, M. M., & Shivdasani, R. A. (2007). Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology, 133(2), 529–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Ishizuya-Oka, A., & Shi, Y. B. (2007). Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Developmental Dynamics, 236(12), 3358–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramalho-Santos, M., Melton, D. A., & McMahon, A. P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development, 127(12), 2763–72.PubMedGoogle Scholar
  36. 36.
    Madison, B. B., Braunstein, K., Kuizon, E., Portman, K., Qiao, X. T., & Gumucio, D. L. (2005). Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development, 132(2), 279–89.PubMedCrossRefGoogle Scholar
  37. 37.
    Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A., & McMahon, A. P. (2010). Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development, 137(10), 1721–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Batts, L. E., Polk, D. B., Dubois, R. N., & Kulessa, H. (2006). Bmp signaling is required for intestinal growth and morphogenesis. Developmental Dynamics, 235(6), 1563–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Torihashi, S., Hattori, T., Hasegawa, H., Kurahashi, M., Ogaeri, T., & Fujimoto, T. (2009). The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation, 77(3), 277–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Skaer, H. (1993). The alimentary canal. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (pp. 941–1012). Plainview, NY: Cold Spring Habor Laboratory Press.Google Scholar
  41. 41.
    Dubreuil, R. R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. The International Journal of Biochemistry & Cell Biology, 36(5), 745–52.CrossRefGoogle Scholar
  42. 42.
    Veenstra, J. A., Agricola, H. J., & Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell and Tissue Research, 334(3), 499–516.PubMedCrossRefGoogle Scholar
  43. 43.
    Veenstra, J. A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell and Tissue Research, 336(2), 309–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Hartenstein, V., Takashima, S., & Adams, K. L. (2010). Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. General and Comparative Endocrinology, 166(3), 462–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Takashima, S., Adams, K. L., Ortiz, P. A., et al. (2011). Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Developments in Biologicals, 353(2), 161–72.CrossRefGoogle Scholar
  46. 46.
    Micchelli, C. A., & Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439(7075), 475–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ohlstein, B., & Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 439(7075), 470–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Singh, S. R., Liu, W., & Hou, S. X. (2007). The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell, 1(2), 191–203.PubMedCrossRefGoogle Scholar
  49. 49.
    Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R., & Hartenstein, V. (2008). The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature, 454(7204), 651–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Singh, S. R., Zeng, X., Zheng, Z., & Hou, S. X. (2011). The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle, 10(7), 1109–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Fox, D. T., & Spradling, A. C. (2009). The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell, 5(3), 290–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, W. C., Beebe, K., Sudmeier, L., & Micchelli, C. A. (2009). Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development, 136(13), 2255–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu, N., Wang, S. Q., Tan, D., Gao, Y., Lin, G., & Xi, R. (2011). EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Developments in Biologicals, 354(1), 31–43.CrossRefGoogle Scholar
  54. 54.
    Ohlstein, B., & Spradling, A. (2007). Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science, 315(5814), 988–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., & Artavanis-Tsakonas, S. (2005). Notch signals control the fate of immature progenitor cells in the intestine. Nature, 435(7044), 964–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, P., & Hou, S. X. (2010). Regulation of intestinal stem cells in mammals and Drosophila. Journal of Cellular Physiology, 222(1), 33–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Bowman, S. K., Rolland, V., Betschinger, J., Kinsey, K. A., Emery, G., & Knoblich, J. A. (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Developmental Cell, 14(4), 535–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Maeda, K., Takemura, M., Umemori, M., & Adachi-Yamada, T. (2008). E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes to Cells, 13(12), 1219–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z., & Edgar, B. A. (2011). EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell, 8(1), 84–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G., & Edgar, B. A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 137(7), 1343–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu, W., Singh, S. R., & Hou, S. X. (2010). JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. Journal of Cellular Biochemistry, 109(5), 992–9.PubMedGoogle Scholar
  62. 62.
    Buchon, N., Broderick, N. A., Chakrabarti, S., & Lemaitre, B. (2009). Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes & Development, 23(19), 2333–44.CrossRefGoogle Scholar
  63. 63.
    Cronin, S. J., Nehme, N. T., Limmer, S., et al. (2009). Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science, 325(5938), 340–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Shaw, R. L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B. A., & Tapon, N. (2010). The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development, 137(24), 4147–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Ren, F., Wang, B., Yue, T., Yun, E. Y., Ip, Y. T., & Jiang, J. (2010). Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 21064–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Karpowicz, P., Perez, J., & Perrimon, N. (2010). The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development, 137(24), 4135–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Campos-Ortega, J. A., & Hartenstein, V. (1985). The Embryonic development of Drosophila melanogaster. Berlin: Springer.Google Scholar
  68. 68.
    Tepass, U., & Hartenstein, V. (1994). Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development, 120(3), 579–90.PubMedGoogle Scholar
  69. 69.
    Jiang, H., & Edgar, B. A. (2009). EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development, 136(3), 483–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Mathur, D., Bost, A., Driver, I., & Ohlstein, B. (2010). A transient niche regulates the specification of Drosophila intestinal stem cells. Science, 327(5962), 210–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Takashima, S., Younossi-Hartenstein, A., Ortiz, P. A., & Hartenstein, V. (2011). A novel tissue in an established model system: the Drosophila pupal midgut. Development Genes and Evolution, 221(2), 69–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Robertson, C. W. (1936). The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. Journal of Morphology, 59(2), 351–99.CrossRefGoogle Scholar
  73. 73.
    Takashima S, Aghajanian P, Paul M, Younossi-Hartenstein A, Hartenstein V. Trans-germ layer migration of Drosophila intestinal stem cells at the developing midgut-hindgut boundary (submitted)Google Scholar
  74. 74.
    Klapper, R. (2000). The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mechanisms of Development, 95(1–2), 47–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations