Stem Cell Reviews and Reports

, Volume 9, Issue 1, pp 65–79 | Cite as

Multipotent Mesenchymal Stromal Cell Therapy and Risk of Malignancies

  • Federica Casiraghi
  • Giuseppe Remuzzi
  • Mauro Abbate
  • Norberto Perico


Cell therapy with Multipotent Mesenchymal Stromal Cells (MSC) holds enormous promise for the treatment of a large number of degenerative and immune/inflammatory diseases. Their multilineage differentiation potential, immunoprivilege and capacity of promoting recovery of damaged tissues coupled with anti-inflammatory and immunosuppressive properties are the focus of a multitude of clinical studies currently underway. The recognized clinical potential of MSC repairing/immunomodulatory effects now encompasses graft-versus-host disease, hematologic malignancies, cardiovascular diseases, neurologic and inherited diseases, autoimmune diseases, organ transplantation, refractory wounds, and bone/cartilage defects among others. However, it has been suggested that both the need of extensive ex vivo culture for MSC clinical use, and their proangiogenic, anti-apoptotic and immunomodulatory properties may act together as tumor promoters, raising significant safety concerns. This paper will review the available data on in vitro MSC maldifferentiation and the ability of MSC to sustain tumor growth in vivo, with the aim to clarify whether MSC-based therapeutic approaches may carry actual risk of malignancies.


Multipotent mesenchymal stromal cells Malignant maldifferentiation Cancer Tumor Safety 



This work was supported by grants from Fondazione ART (Fondazione per la Ricerca sui Trapianti, Milan, Italy). We greatly acknowledge Drs. Martino Introna and Alessandro Rambaldi for their suggestions and helpful discussion. The authors are members of the Mesenchymal Stem Cells in Solid Organ Transplantation (MISOT) study group,

Part of the research leading to this work has received funding from the European Community under the European Community’s Seventh Framework Programme (FP7/2007-2013), grant number 223007, STAR-T REK project.

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403.PubMedGoogle Scholar
  2. 2.
    Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17(4), 331–340.PubMedCrossRefGoogle Scholar
  3. 3.
    Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313–319.PubMedCrossRefGoogle Scholar
  4. 4.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.PubMedCrossRefGoogle Scholar
  5. 5.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.PubMedCrossRefGoogle Scholar
  6. 6.
    Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.PubMedCrossRefGoogle Scholar
  7. 7.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  8. 8.
    Prockop, D. J. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology and Therapeutics, 82(3), 241–243.PubMedCrossRefGoogle Scholar
  9. 9.
    Masutomi, K., Yu, E. Y., Khurts, S., et al. (2003). Telomerase maintains telomere structure in normal human cells. Cell, 114(2), 241–253.PubMedCrossRefGoogle Scholar
  10. 10.
    Lloyd, A. C. (2002). Limits to lifespan. Nature Cell Biology, 4(2), E25–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou, Y. F., Bosch-Marce, M., Okuyama, H., Krishnamachary, B., Kimura, H., Zhang, L., Huso, D. L., & Semenza, G. L. (2006). Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Research, 66(22), 10849–10854.PubMedCrossRefGoogle Scholar
  12. 12.
    Miura, M., Miura, Y., Padilla-Nash, H. M., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 24(4), 1095–1103.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, H., Fan, X., Kovi, R. C., et al. (2007). Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Research, 67(22), 10889–10898.PubMedCrossRefGoogle Scholar
  14. 14.
    Aguilar, S., Nye, E., Chan, J., et al. (2007). Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells, 25(6), 1586–1594.PubMedCrossRefGoogle Scholar
  15. 15.
    Fiorina, P., Jurewicz, M., Augello, A., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183(2), 993–1004.CrossRefGoogle Scholar
  16. 16.
    Tolar, J., Nauta, A. J., Osborn, M. J., et al. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25(2), 371–379.PubMedCrossRefGoogle Scholar
  17. 17.
    Mohseny, A. B., Szuhai, K., Romeo, S., et al. (2009). Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. The Journal of Pathology, 219(3), 294–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Armesilla-Diaz, A., Elvira, G., & Silva, A. (2009). p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Experimental Cell Research, 315(20), 3598–3610.PubMedCrossRefGoogle Scholar
  19. 19.
    Rodriguez, R., Rubio, R., Masip, M., et al. (2009). Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia, 11(4), 397–407.PubMedGoogle Scholar
  20. 20.
    Rubio, R., Garcia-Castro, J., Gutierrez-Aranda, I., et al. (2010). Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Research, 70(10), 4185–4194.PubMedCrossRefGoogle Scholar
  21. 21.
    Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, J., Kang, J. W., Park, J. H., et al. (2009). Biological characterization of long-term cultured human mesenchymal stem cells. Archives of Pharmacal Research, 32(1), 117–126.PubMedCrossRefGoogle Scholar
  23. 23.
    Choumerianou, D. M., Dimitriou, H., Perdikogianni, C., Martimianaki, G., Riminucci, M., & Kalmanti, M. (2008). Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Proliferation, 41(6), 909–922.PubMedCrossRefGoogle Scholar
  24. 24.
    Lopez-Villar, O., Garcia, J. L., Sanchez-Guijo, F. M., et al. (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4), 664–672.PubMedCrossRefGoogle Scholar
  25. 25.
    Tarte, K., Gaillard, J., Lataillade, J. J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115(8), 1549–1553.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, Y., Huso, D. L., Harrington, J., et al. (2005). Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy, 7(6), 509–519.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubio, D., Garcia-Castro, J., Martin, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.PubMedGoogle Scholar
  28. 28.
    Rubio, D., Garcia, S., Paz, M. F., et al. (2008). Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One, 3(1), e1398.PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia, S., Bernad, A., Martin, M. C., Cigudosa, J. C., Garcia-Castro, J., & de la Fuente, R. (2010). Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Experimental Cell Research, 316(9), 1648–1650.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosland, G. V., Svendsen, A., Torsvik, A., et al. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69(13), 5331–5339.PubMedCrossRefGoogle Scholar
  31. 31.
    Torsvik, A., Rosland, G. V., Svendsen, A., et al. (2010). Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Research, 70(15), 6393–6396.PubMedCrossRefGoogle Scholar
  32. 32.
    Allers, C., Sierralta, W. D., Neubauer, S., Rivera, F., Minguell, J. J., & Conget, P. A. (2004). Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation, 78(4), 503–508.PubMedCrossRefGoogle Scholar
  33. 33.
    Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., & Marini, F. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Therapy, 15(10), 730–738.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakamizo, A., Marini, F., Amano, T., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65(8), 3307–3318.PubMedGoogle Scholar
  35. 35.
    Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedCrossRefGoogle Scholar
  36. 36.
    Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., et al. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13(17), 5020–5027.PubMedCrossRefGoogle Scholar
  37. 37.
    Molloy, A. P., Martin, F. T., Dwyer, R. M., et al. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124(2), 326–332.CrossRefGoogle Scholar
  38. 38.
    Birnbaum, T., Roider, J., Schankin, C. J., et al. (2007). Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of Neuro-Oncology, 83(3), 241–247.PubMedCrossRefGoogle Scholar
  39. 39.
    Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., & Neth, P. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood, 109(9), 4055–4063.PubMedCrossRefGoogle Scholar
  40. 40.
    Ho, I. A., Chan, K. Y., Ng, W. H., et al. (2009). Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27(6), 1366–1375.PubMedCrossRefGoogle Scholar
  41. 41.
    Cheng, P., Gao, Z. Q., Liu, Y. H., & Xue, Y. X. (2009). Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1. Neuroscience Letters, 451(1), 52–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Annabi, B., Lee, Y. T., Turcotte, S., et al. (2003). Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells, 21(3), 337–347.PubMedCrossRefGoogle Scholar
  43. 43.
    Klopp, A. H., Spaeth, E. L., Dembinski, J. L., et al. (2007). Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Research, 67(24), 11687–11695.PubMedCrossRefGoogle Scholar
  44. 44.
    Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews. Cancer, 1(1), 46–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Roorda, B. D., ter Elst, A., Kamps, W. A., & de Bont, E. S. (2009). Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Critical Reviews in Oncology/Hematology, 69(3), 187–198.PubMedCrossRefGoogle Scholar
  46. 46.
    Brune, J. C., Tormin, A., Johansson, M. C., et al. (2011). Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. International Journal of Cancer, 129(2), 319–330.CrossRefGoogle Scholar
  47. 47.
    Ramasamy, R., Lam, E. W., Soeiro, I., Tisato, V., Bonnet, D., & Dazzi, F. (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 21(2), 304–310.PubMedCrossRefGoogle Scholar
  48. 48.
    Bian, Z. Y., Fan, Q. M., Li, G., Xu, W. T., & Tang, T. T. (2010). Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Science, 101(12), 2554–2560.PubMedCrossRefGoogle Scholar
  49. 49.
    Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V., & Altaner, C. (2010). Tumor cell behaviour modulation by mesenchymal stromal cells. Molecular Cancer, 9, 129.PubMedCrossRefGoogle Scholar
  50. 50.
    Yu, J. M., Jun, E. S., Bae, Y. C., & Jung, J. S. (2008). Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17(3), 463–473.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu, W., Xu, W., Jiang, R., et al. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80(3), 267–274.PubMedCrossRefGoogle Scholar
  52. 52.
    Lu, Y. R., Yuan, Y., Wang, X. J., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biology & Therapy, 7(2), 245–251.CrossRefGoogle Scholar
  53. 53.
    Qiao, L., Xu, Z., Zhao, T., et al. (2008). Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Research, 18(4), 500–507.PubMedCrossRefGoogle Scholar
  54. 54.
    Qiao, L., Xu, Z. L., Zhao, T. J., Ye, L. H., & Zhang, X. D. (2008). Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Letters, 269(1), 67–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Qiao, L., Zhao, T. J., Wang, F. Z., Shan, C. L., Ye, L. H., & Zhang, X. D. (2008). NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacologica Sinica, 29(3), 333–340.PubMedCrossRefGoogle Scholar
  56. 56.
    Cousin, B., Ravet, E., Poglio, S., et al. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One, 4(7), e6278.PubMedCrossRefGoogle Scholar
  57. 57.
    Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10), 3837–3844.PubMedCrossRefGoogle Scholar
  58. 58.
    Djouad, F., Bony, C., Apparailly, F., Louis-Plence, P., Jorgensen, C., & Noel, D. (2006). Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation, 82(8), 1060–1066.PubMedCrossRefGoogle Scholar
  59. 59.
    Ohlsson, L. B., Varas, L., Kjellman, C., Edvardsen, K., & Lindvall, M. (2003). Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Experimental and Molecular Pathology, 75(3), 248–255.PubMedCrossRefGoogle Scholar
  60. 60.
    Hung, S. C., Deng, W. P., Yang, W. K., et al. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clinical Cancer Research, 11(21), 7749–7756.PubMedCrossRefGoogle Scholar
  61. 61.
    Beckermann, B. M., Kallifatidis, G., Groth, A., et al. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99(4), 622–631.PubMedCrossRefGoogle Scholar
  62. 62.
    Lin, G., Yang, R., Banie, L., et al. (2010). Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate, 70(10), 1066–1073.PubMedCrossRefGoogle Scholar
  63. 63.
    Sun, B., Zhang, S., Ni, C., et al. (2005). Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells and Development, 14(3), 292–298.PubMedCrossRefGoogle Scholar
  64. 64.
    Khakoo, A. Y., Pati, S., Anderson, S. A., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. The Journal of Experimental Medicine, 203(5), 1235–1247.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhu, Y., Sun, Z., Han, Q., et al. (2009). Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia, 23(5), 925–933.PubMedCrossRefGoogle Scholar
  66. 66.
    Dasari, V. R., Kaur, K., Velpula, K. K., et al. (2010). Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One, 5(4), e10350.PubMedCrossRefGoogle Scholar
  67. 67.
    Dasari, V. R., Velpula, K. K., Kaur, K., et al. (2010). Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS One, 5(7), e11813.PubMedCrossRefGoogle Scholar
  68. 68.
    Secchiero, P., Zorzet, S., Tripodo, C., et al. (2010). Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One, 5(6), e11140.PubMedCrossRefGoogle Scholar
  69. 69.
    Garcia-Castro, J., Alemany, R., Cascallo, M., et al. (2010). Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Therapy, 17(7), 476–483.PubMedCrossRefGoogle Scholar
  70. 70.
    Ling, X., Marini, F., Konopleva, M., et al. (2010). Mesenchymal Stem Cells Overexpressing IFN-beta Inhibit Breast Cancer Growth and Metastases through Stat3 Signaling in a Syngeneic Tumor Model. Cancer Microenviron, 3(1), 83–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Ren, C., Kumar, S., Chanda, D., et al. (2008). Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Therapy, 15(21), 1446–1453.PubMedCrossRefGoogle Scholar
  72. 72.
    Ren, C., Kumar, S., Chanda, D., Chen, J., Mountz, J. D., & Ponnazhagan, S. (2008). Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells, 26(6), 2332–2338.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, X., Lin, X., Zhao, J., et al. (2008). A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Molecular Therapy, 16(4), 749–756.PubMedCrossRefGoogle Scholar
  74. 74.
    Seo, S. H., Kim, K. S., Park, S. H., et al. (2011). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Therapy, 18(5), 488–495.PubMedCrossRefGoogle Scholar
  75. 75.
    Ryu, C. H., Park, S. H., Park, S. A., et al. (2011). Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Human Gene Therapy, 22(6), 733–743.PubMedCrossRefGoogle Scholar
  76. 76.
    Xin, H., Kanehira, M., Mizuguchi, H., et al. (2007). Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells, 25(7), 1618–1626.PubMedCrossRefGoogle Scholar
  77. 77.
    Zischek, C., Niess, H., Ischenko, I., et al. (2009). Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Annals of Surgery, 250(5), 747–753.PubMedCrossRefGoogle Scholar
  78. 78.
    Perico, N., Casiraghi, F., Introna, M., et al. (2011). Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clinical Journal of the American Society of Nephrology, 6(2), 412–422.PubMedCrossRefGoogle Scholar
  79. 79.
    Yu, Y., Fuhr, J., Boye, E., et al. (2006). Mesenchymal stem cells and adipogenesis in hemangioma involution. Stem Cells, 24(6), 1605–1612.PubMedCrossRefGoogle Scholar
  80. 80.
    Mishra, P. J., Humeniuk, R., Medina, D. J., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68(11), 4331–4339.PubMedCrossRefGoogle Scholar
  81. 81.
    Jeon, E. S., Lee, I. H., Heo, S. C., et al. (2010). Mesenchymal stem cells stimulate angiogenesis in a murine xenograft model of A549 human adenocarcinoma through an LPA1 receptor-dependent mechanism. Biochimica et Biophysica Acta, 1801(11), 1205–1213.PubMedCrossRefGoogle Scholar
  82. 82.
    Spaeth, E. L., Dembinski, J. L., Sasser, A. K., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One, 4(4), e4992.PubMedCrossRefGoogle Scholar
  83. 83.
    Annabi, B., Naud, E., Lee, Y. T., Eliopoulos, N., & Galipeau, J. (2004). Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. Journal of Cellular Biochemistry, 91(6), 1146–1158.PubMedCrossRefGoogle Scholar
  84. 84.
    Prantl, L., Muehlberg, F., Navone, N. M., et al. (2010). Adipose tissue-derived stem cells promote prostate tumor growth. Prostate, 70(15), 1709–1715.PubMedCrossRefGoogle Scholar
  85. 85.
    Muehlberg, F. L., Song, Y. H., Krohn, A., et al. (2009). Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis, 30(4), 589–597.PubMedCrossRefGoogle Scholar
  86. 86.
    Li, L., Tian, H., Yue, W., Zhu, F., Li, S., & Li, W. (2011). Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. Journal of Cellular Physiology, 226(7), 1860–1867.PubMedCrossRefGoogle Scholar
  87. 87.
    Arima, N., Nakamura, F., Fukunaga, A., et al. (2010). Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy, 12(2), 265–268.PubMedCrossRefGoogle Scholar
  88. 88.
    Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371(9624), 1579–1586.PubMedCrossRefGoogle Scholar
  89. 89.
    Ringden, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.PubMedCrossRefGoogle Scholar
  90. 90.
    von Bonin, M., Stolzel, F., Goedecke, A., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation, 43(3), 245–251.CrossRefGoogle Scholar
  91. 91.
    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.PubMedCrossRefGoogle Scholar
  92. 92.
    Perez Simon, J. A., Lopez-Villar, O., Andreu, E. J., et al. (2011). Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica, 96(7), 1072–1076.PubMedCrossRefGoogle Scholar
  93. 93.
    Prasad, V. K., Lucas, K. G., Kleiner, G. I., et al. (2010). Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biology of Blood and Marrow Transplantation, 17(4), 534–541.PubMedCrossRefGoogle Scholar
  94. 94.
    Kebriaei, P., Isola, L., Bahceci, E., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 15(7), 804–811.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou, H., Guo, M., Bian, C., et al. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412.PubMedCrossRefGoogle Scholar
  96. 96.
    Meuleman, N., Tondreau, T., Ahmad, I., et al. (2009). Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells and Development, 18(9), 1247–1252.PubMedCrossRefGoogle Scholar
  97. 97.
    Macmillan, M. L., Blazar, B. R., DeFor, T. E., & Wagner, J. E. (2009). Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplantation, 43(6), 447–454.PubMedCrossRefGoogle Scholar
  98. 98.
    Muller, I., Kordowich, S., Holzwarth, C., et al. (2008). Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells, Molecules & Diseases, 40(1), 25–32.CrossRefGoogle Scholar
  99. 99.
    Ball, L. M., Bernardo, M. E., Roelofs, H., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110(7), 2764–2767.PubMedCrossRefGoogle Scholar
  100. 100.
    Fang, B., Li, N., Song, Y., Li, J., Zhao, R. C., & Ma, Y. (2009). Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatric Transplantation, 13(4), 499–502.PubMedCrossRefGoogle Scholar
  101. 101.
    Fouillard, L., Bensidhoum, M., Bories, D., et al. (2003). Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia, 17(2), 474–476.PubMedCrossRefGoogle Scholar
  102. 102.
    Koc, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2), 307–316.PubMedGoogle Scholar
  103. 103.
    Ning, H., Yang, F., Jiang, M., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22(3), 593–599.PubMedCrossRefGoogle Scholar
  104. 104.
    Lazarus, H. M., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398.PubMedCrossRefGoogle Scholar
  105. 105.
    Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557–564.PubMedGoogle Scholar
  106. 106.
    Lee, S. T., Jang, J. H., Cheong, J. W., et al. (2002). Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. British Journal of Haematology, 118(4), 1128–1131.PubMedCrossRefGoogle Scholar
  107. 107.
    Liu, K., Chen, Y., Zeng, Y., et al. (2011). Coinfusion of Mesenchymal Stromal Cells Facilitates Platelet Recovery Without Increasing Leukemia Recurrence in Haploidentical Hematopoietic Stem Cell Transplantation: A Randomized, Controlled Clinical Study. Stem Cells and Development, 20(10), 1679–1685.PubMedCrossRefGoogle Scholar
  108. 108.
    Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., et al. (2007). Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Archives of Iranian Medicine, 10(4), 467–473.PubMedGoogle Scholar
  109. 109.
    Katritsis, D. G., Sotiropoulou, P. A., Karvouni, E., et al. (2005). Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheterization and Cardiovascular Interventions, 65(3), 321–329.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen, S. L., Fang, W. W., Qian, J., et al. (2004). Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chinese Medical Journal, 117(10), 1443–1448.PubMedGoogle Scholar
  111. 111.
    Katritsis, D. G., Sotiropoulou, P., Giazitzoglou, E., Karvouni, E., & Papamichail, M. (2007). Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace, 9(3), 167–171.PubMedCrossRefGoogle Scholar
  112. 112.
    Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286.PubMedCrossRefGoogle Scholar
  113. 113.
    Chen, S., Liu, Z., Tian, N., et al. (2006). Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. The Journal of Invasive Cardiology, 18(11), 552–556.PubMedGoogle Scholar
  114. 114.
    Mazzini, L., Ferrero, I., Luparello, V., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Experimental Neurology, 223(1), 229–237.PubMedCrossRefGoogle Scholar
  115. 115.
    Mazzini, L., Mareschi, K., Ferrero, I., et al. (2008). Stem cell treatment in Amyotrophic Lateral Sclerosis. Journal of Neurological Sciences, 265(1–2), 78–83.CrossRefGoogle Scholar
  116. 116.
    Mazzini, L., Mareschi, K., Ferrero, I., et al. (2006). Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurological Research, 28(5), 523–526.PubMedCrossRefGoogle Scholar
  117. 117.
    Mazzini, L., Fagioli, F., Boccaletti, R., et al. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 4(3), 158–161.PubMedCrossRefGoogle Scholar
  118. 118.
    Koc, O. N., Day, J., Nieder, M., Gerson, S. L., Lazarus, H. M., & Krivit, W. (2002). Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplantation, 30(4), 215–222.PubMedCrossRefGoogle Scholar
  119. 119.
    Venkataramana, N. K., Kumar, S. K., Balaraju, S., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational Research, 155(2), 62–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Bang, O. Y., Lee, J. S., Lee, P. H., & Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 57(6), 874–882.PubMedCrossRefGoogle Scholar
  121. 121.
    Lee, P. H., Kim, J. W., Bang, O. Y., Ahn, Y. H., Joo, I. S., & Huh, K. (2008). Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clinical Pharmacology and Therapeutics, 83(5), 723–730.PubMedCrossRefGoogle Scholar
  122. 122.
    Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., et al. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal of Immunology, 4(1), 50–57.PubMedGoogle Scholar
  123. 123.
    Sun, L., Akiyama, K., Zhang, H., et al. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 27(6), 1421–1432.PubMedCrossRefGoogle Scholar
  124. 124.
    Sun, L., Wang, D., Liang, J., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 62(8), 2467–2475.PubMedCrossRefGoogle Scholar
  125. 125.
    Carrion, F., Nova, E., Ruiz, C., et al. (2010). Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus, 19(3), 317–322.PubMedCrossRefGoogle Scholar
  126. 126.
    Fang, B., Song, Y. P., Li, N., Li, J., Han, Q., & Zhao, R. C. (2009). Resolution of refractory chronic autoimmune thrombocytopenic purpura following mesenchymal stem cell transplantation: a case report. Transplantation Proceedings, 41(5), 1827–1830.PubMedCrossRefGoogle Scholar
  127. 127.
    Dash, N. R., Dash, S. N., Routray, P., Mohapatra, S., & Mohapatra, P. C. (2009). Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Research, 12(5), 359–366.PubMedCrossRefGoogle Scholar
  128. 128.
    Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C., & Rodriguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon and Rectum, 48(7), 1416–1423.PubMedCrossRefGoogle Scholar
  129. 129.
    Falanga, V., Iwamoto, S., Chartier, M., et al. (2007). Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Engineering, 13(6), 1299–1312.PubMedCrossRefGoogle Scholar
  130. 130.
    Garcia-Olmo, D., Herreros, D., Pascual, I., et al. (2009). Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Diseases of the Colon and Rectum, 52(1), 79–86.PubMedCrossRefGoogle Scholar
  131. 131.
    Ringden, O., Uzunel, M., Sundberg, B., et al. (2007). Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia, 21(11), 2271–2276.PubMedCrossRefGoogle Scholar
  132. 132.
    Vojtassak, J., Danisovic, L., Kubes, M., et al. (2006). Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinology Letters, 27(2), 134–137.PubMedGoogle Scholar
  133. 133.
    Pal, R., Venkataramana, N. K., Bansal, A., et al. (2009). Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy, 11(7), 897–911.PubMedCrossRefGoogle Scholar
  134. 134.
    Ra, J. C., Shin, I. S., Kim, S. H., Kang, S. K., Kang, B. C., Lee, H. Y., Kim, Y. J., Jo, J. Y., Yoon, E. J., Choi, H. J., & Kwon, E. (2011). Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells and Development, 20(8), 1297–1308.PubMedCrossRefGoogle Scholar
  135. 135.
    Centeno, C. J., Busse, D., Kisiday, J., Keohan, C., Freeman, M., & Karli, D. (2008). Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 11(3), 343–353.PubMedGoogle Scholar
  136. 136.
    Wakitani, S., Okabe, T., Horibe, S., et al. (2011). Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 146–150.PubMedCrossRefGoogle Scholar
  137. 137.
    Kursova, L. V., Konoplyannikov, A. G., Pasov, V. V., Ivanova, I. N., Poluektova, M. V., & Konoplyannikova, O. A. (2009). Possibilities for the use of autologous mesenchymal stem cells in the therapy of radiation-induced lung injuries. Bulletin of Experimental Biology and Medicine, 147(4), 542–546.PubMedCrossRefGoogle Scholar
  138. 138.
    Mohamadnejad, M., Alimoghaddam, K., Mohyeddin-Bonab, M., et al. (2007). Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Archives of Iranian Medicine, 10(4), 459–466.PubMedGoogle Scholar
  139. 139.
    Yoshikawa, T., Mitsuno, H., Nonaka, I., et al. (2008). Wound therapy by marrow mesenchymal cell transplantation. Plastic and Reconstructive Surgery, 121(3), 860–877.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Federica Casiraghi
    • 1
    • 2
  • Giuseppe Remuzzi
    • 1
  • Mauro Abbate
    • 1
  • Norberto Perico
    • 1
  1. 1.Transplant Research Center “Chiara Cucchi de Alessandri e Gilberto Crespi”, Department of Immunology and TransplantationOspedali Riuniti – Mario Negri Institute for Pharmacological ResearchBergamoItaly
  2. 2.Transplant Research Center “Chiara Cucchi de Alessandri e Gilberto Crespi”Mario Negri Institute for Pharmacological ResearchRanicaItaly

Personalised recommendations