Stem Cell Reviews and Reports

, Volume 8, Issue 3, pp 844–853 | Cite as

Fibrin-Embedded Adipose Derived Stem Cells Enhance Skin Flap Survival

  • Matthias A. Reichenberger
  • Wolf Mueller
  • Amelia Schäfer
  • Sina Heimer
  • Uwe Leimer
  • Ulrike Lass
  • Günter Germann
  • Eva Köllensperger


Surgical skin flaps are frequently used procedures in plastic and reconstructive surgery to cover acquired or congenital defects. Either partial or total skin flap loss is a common complication, as survival of the skin flaps is determined by tissue ischemia because of insufficient vascularity. To address this issue, a number of strategies have been described to enhance blood supply and to increase skin flap survival [1, 2, 3].

Among these, stem cell-based therapies play an increasing role, due to their capacity to self-renew and differentiate into a variety of specific cell lines. Especially adipose -derived stem cells (ADSCs)—therapies have raised tremendous interest in the field of soft tissue reconstruction as they offer distinct advantages over bone marrow-derived stem cells [4]. ADSCs can be easily harvested in a minimal invasive procedure, found in abundant quantities and have the ability to differentiate into osteoblasts, chondrocytes and adipocytes in controllable...


Fibrin Glue Microvessel Density Skin Flap Perfusion Index Sham Control Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of Interest

No potential conflicts of interest were disclosed.


  1. 1.
    Harder, Y., Amon, M., Laschke, M. W., et al. (2008). An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. Journal of Plastic, Reconstructive & Aesthetic Surgery, 61, 503–511.CrossRefGoogle Scholar
  2. 2.
    Siemionow, M., & Arslan, E. (2004). Ischemia/reperfusion injury: a review in relation to free tissue transfers. Microsurgery, 24, 468–475.PubMedCrossRefGoogle Scholar
  3. 3.
    Tapuria, N., Kumar, Y., Habib, M. M., Abu Amara, M., Seifalian, A. M., & Davidson, B. R. (2008). Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. Journal of Surgical Research, 150, 304–330.PubMedCrossRefGoogle Scholar
  4. 4.
    Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.PubMedCrossRefGoogle Scholar
  5. 5.
    Behr B, Hee Ko S, Wong VW, Gurtner GC, Longaker MT. Stem cells. Plast Reconstr Surg. 2010.Google Scholar
  6. 6.
    Schaffler, A., & Buchler, C. (2007). Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.PubMedCrossRefGoogle Scholar
  7. 7.
    Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews, 7, 269–291.PubMedCrossRefGoogle Scholar
  8. 8.
    Ichioka, S., Kudo, S., Shibata, M., Ando, J., Sekiya, N., & Nakatsuka, T. (2004). Bone marrow cell implantation improves flap viability after ischemia-reperfusion injury. Annals of Plastic Surgery, 52, 414–418.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, H., Zan, T., Li, Y., et al. (2010). Transplantation of adipose-derived stem cells promotes formation of prefabricated flap in a rat model. The Tohoku Journal of Experimental Medicine, 222, 131–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu, F., Mizuno, H., Uysal, C. A., Cai, X., Ogawa, R., & Hyakusoku, H. (2008). Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plastic and Reconstructive Surgery, 121, 50–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Simman, R., Craft, C., & McKinney, B. (2005). Improved survival of ischemic random skin flaps through the use of bone marrow nonhematopoietic stem cells and angiogenic growth factors. Annals of Plastic Surgery, 54, 546–552.PubMedCrossRefGoogle Scholar
  12. 12.
    Uysal, A. C., Mizuno, H., Tobita, M., Ogawa, R., & Hyakusoku, H. (2009). The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plastic and Reconstructive Surgery, 124, 804–815.PubMedCrossRefGoogle Scholar
  13. 13.
    Uysal, C. A., Ogawa, R., Lu, F., Hyakusoku, H., & Mizuno, H. (2010). Effect of mesenchymal stem cells on skin graft to flap prefabrication: an experimental study. Annals of Plastic Surgery, 65, 237–244.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, F. G., Yao, Y., Feng, Y., Hua, C. G., & Tang, X. F. (2011). Mesenchymal stem cells transduced by stromal cell-derived factor-1alpha augment ischemic free flaps’ survival. Annals of Plastic Surgery, 66, 92–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, Y. T., Sun, C. K., Lin, Y. C., et al. (2011). Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. Journal of Translational Medicine, 9, 51.PubMedCrossRefGoogle Scholar
  16. 16.
    Karaoz, E., Aksoy, A., Ayhan, S., Sariboyaci, A. E., Kaymaz, F., & Kasap, M. (2009). Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochemistry and Cell Biology, 132, 533–546.PubMedCrossRefGoogle Scholar
  17. 17.
    Engel, H., Sauerbier, M., Germann, G., & Kuntscher, M. V. (2007). Dose-dependent effects of a nitric oxide donor in a rat flap model. Annals of Plastic Surgery, 58, 456–460.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuntscher, M. V., Kastell, T., Engel, H., Gebhard, M. M., Heitmann, C., & Germann, G. (2003). Late remote ischemic preconditioning in rat muscle and adipocutaneous flap models. Annals of Plastic Surgery, 51, 84–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Padubidri, A. N., & Browne, E., Jr. (1997). Modification in flap design of the epigastric artery flap in rats–a new experimental flap model. Annals of Plastic Surgery, 39, 500–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Keil, H., Mueller, W., Herold-Mende, C., et al. (2011). Preoperative shock wave treatment enhances ischemic tissue survival, blood flow and angiogenesis in a rat skin flap model. International Journal of Surgery, 9, 292–296.PubMedCrossRefGoogle Scholar
  21. 21.
    Reichenberger MA, Keil H, Mueller W, et al. Optimal Timing of Extracorporeal Shock Wave Treatment to protect ischemic tissue. Ann Plast Surg. 2011.Google Scholar
  22. 22.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  23. 23.
    Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395.PubMedCrossRefGoogle Scholar
  24. 24.
    Gillitzer, R., & Goebeler, M. (2001). Chemokines in cutaneous wound healing. Journal of Leukocyte Biology, 69, 513–521.PubMedGoogle Scholar
  25. 25.
    Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. The New England Journal of Medicine, 341, 738–746.PubMedCrossRefGoogle Scholar
  26. 26.
    Stojadinovic, A., Elster, E. A., Anam, K., et al. (2008). Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis, 11, 369–380.PubMedCrossRefGoogle Scholar
  27. 27.
    Ashrafpour, H., Huang, N., Neligan, P. C., et al. (2004). Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 286, H946–H954.PubMedCrossRefGoogle Scholar
  28. 28.
    Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.PubMedCrossRefGoogle Scholar
  29. 29.
    Ladage, D., Brixius, K., Steingen, C., et al. (2007). Mesenchymal stem cells induce endothelial activation via paracine mechanisms. Endothelium, 14, 53–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Steingen, C., Brenig, F., Baumgartner, L., Schmidt, J., Schmidt, A., & Bloch, W. (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. Journal of Molecular and Cellular Cardiology, 44, 1072–1084.PubMedCrossRefGoogle Scholar
  31. 31.
    Kavanagh, D. P., & Kalia, N. (2011). Hematopoietic stem cell homing to injured tissues. Stem Cell Reviews, 7, 672–682.PubMedCrossRefGoogle Scholar
  32. 32.
    Schichor, C., Birnbaum, T., Etminan, N., et al. (2006). Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Experimental Neurology, 199, 301–310.PubMedCrossRefGoogle Scholar
  33. 33.
    Ponte, A. L., Marais, E., Gallay, N., et al. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25, 1737–1745.PubMedCrossRefGoogle Scholar
  34. 34.
    Ruster, B., Gottig, S., Ludwig, R. J., et al. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 108, 3938–3944.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthias A. Reichenberger
    • 1
  • Wolf Mueller
    • 2
  • Amelia Schäfer
    • 1
  • Sina Heimer
    • 1
  • Uwe Leimer
    • 1
  • Ulrike Lass
    • 3
  • Günter Germann
    • 1
  • Eva Köllensperger
    • 1
  1. 1.Clinic for Plastic and Reconstructive SurgeryAesthetic and Preventive Medicine at Heidelberg University Hospital - ETHIANUMHeidelbergGermany
  2. 2.Department of Neuropathology at the Institute for PathologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Clinical Cooperation Unit NeuropathologyGerman Cancer Center, DKFZHeidelbergGermany

Personalised recommendations