Stem Cell Reviews and Reports

, Volume 8, Issue 3, pp 926–939 | Cite as

Endothelial Progenitor Cells: Current Issues on Characterization and Challenging Clinical Applications

  • Thomas Resch
  • Andreas Pircher
  • Christian M. Kähler
  • Johann Pratschke
  • Wolfgang Hilbe


Since their discovery about a decade ago, endothelial precursor cells (EPC) have been subjected to intensive investigation. The vision to stimulate respectively suppress a key player of vasculogenesis opened a plethora of clinical applications. However, as research opened deeper insights into EPC biology, the enthusiasm of the pioneer era has been damped in favour of a more critical view. Recent research is focused on three major questions: The fact that the number of EPC in peripheral blood is exceedingly low has consistently raised suspicion whether these cells can plausibly have an impact on physiological or pathophysiological processes. Secondly, whereas the key role of EPC in tumourigenesis has been strongly emphasized by various groups in the past, recent publications are challenging this hypothesis. Thirdly, the lack of consensus on EPC-defining markers and standardized protocols for their detection have repeatedly led to difficulties concerning comparability between papers. In this current review, an overview on recent findings on EPC biology is given, their challenging clinical implications are discussed and the perplexity underlying the current controversial debate is illustrated.


Endothelial progenitor cells Vasculogenesis Angiogenesis Cell therapy Cell transplantation Tumour vascularisation Characterizing EPC 



This study was supported by the “Verein für Tumorforschung” and the Association of Experimental Chest Medicine, Austria.


  1. 1.
    Rumpold, H., Wolf, D., Koeck, R., & Gunsilius, E. (2004). Endothelial progenitor cells: A source for therapeutic vasculogenesis? Journal of Cellular and Molecular Medicine, 8(4), 509–518.PubMedCrossRefGoogle Scholar
  2. 2.
    Young, P. P., Vaughan, D. E., & Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Progress in Cardiovascular Diseases, 49(6), 421–429.PubMedCrossRefGoogle Scholar
  3. 3.
    Sata, M., Fukuda, D., Tanaka, K., Kaneda, Y., Yashiro, H., & Shirakawa, I. (2005). The role of circulating precursors in vascular repair and lesion formation. Journal of Cellular and Molecular Medicine, 9(3), 557–568.PubMedCrossRefGoogle Scholar
  4. 4.
    Iwami, Y., Masuda, H., & Asahara, T. (2004). Endothelial progenitor cells: Past, state of the art, and future. Journal of Cellular and Molecular Medicine, 8(4), 488–497.PubMedCrossRefGoogle Scholar
  5. 5.
    Kovacic, J. C., Moore, J., Herbert, A., Ma, D., Boehm, M., & Graham, R. M. (2008). Endothelial progenitor cells, angioblasts, and angiogenesis–old terms reconsidered from a current perspective. Trends in Cardiovascular Medicine, 18(2), 45–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der, Z. R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.PubMedCrossRefGoogle Scholar
  7. 7.
    Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88(2), 167–174.PubMedCrossRefGoogle Scholar
  8. 8.
    Khoo, C. P., Pozzilli, P., & Alison, M. R. (2008). Endothelial progenitor cells and their potential therapeutic applications. Regenerative Medicine, 3(6), 863–876.PubMedCrossRefGoogle Scholar
  9. 9.
    Rafii, S., Lyden, D., Benezra, R., Hattori, K., & Heissig, B. (2002). Vascular and haematopoietic stem cells: Novel targets for anti-angiogenesis therapy? Nature Reviews. Cancer, 2(11), 826–835.PubMedCrossRefGoogle Scholar
  10. 10.
    Dome, B., Dobos, J., Tovari, J., Paku, S., Kovacs, G., Ostoros, G., et al. (2008). Circulating bone marrow-derived endothelial progenitor cells: Characterization, mobilization, and therapeutic considerations in malignant disease. Cytometry. Part A, 73(3), 186–193.CrossRefGoogle Scholar
  11. 11.
    Miller-Kasprzak, E., & Jagodzinski, P. P. (2007). Endothelial progenitor cells as a new agent contributing to vascular repair. Archivum Immunologiae et Therapiae Experimentalis, 55(4), 247–259.PubMedCrossRefGoogle Scholar
  12. 12.
    Rafii, D. C., Psaila, B., Butler, J., Jin, D. K., & Lyden, D. (2008). Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 217–222.PubMedCrossRefGoogle Scholar
  13. 13.
    Brixius, K., Funcke, F., Graf, C., & Bloch, W. (2006). Endothelial progenitor cells: A new target for the prevention of cardiovascular diseases. European Journal of Cardiovascular Prevention and Rehabilitation, 13(5), 705–710.PubMedCrossRefGoogle Scholar
  14. 14.
    Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.PubMedCrossRefGoogle Scholar
  15. 15.
    Hristov, M., Erl, W., & Weber, P. C. (2003). Endothelial progenitor cells: Mobilization, differentiation, and homing. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(7), 1185–1189.PubMedCrossRefGoogle Scholar
  16. 16.
    Werner, N., & Nickenig, G. (2006). Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 257–266.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., et al. (2008). Heart disease and stroke statistics–2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 117(4), e25–e146.PubMedCrossRefGoogle Scholar
  18. 18.
    Tongers, J., & Losordo, D. W. (2007). Frontiers in nephrology: The evolving therapeutic applications of endothelial progenitor cells. Journal of the American Society of Nephrology, 18(11), 2843–2852.PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts, N., Jahangiri, M., & Xu, Q. (2005). Progenitor cells in vascular disease. Journal of Cellular and Molecular Medicine, 9(3), 583–591.PubMedCrossRefGoogle Scholar
  20. 20.
    Goon, P. K., Lip, G. Y., Boos, C. J., Stonelake, P. S., & Blann, A. D. (2006). Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8(2), 79–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Naumov, G. N., Folkman, J., Straume, O., & Akslen, L. A. (2008). Tumor-vascular interactions and tumor dormancy. APMIS, 116(7–8), 569–585.PubMedCrossRefGoogle Scholar
  22. 22.
    Ergun, S., Hohn, H. P., Kilic, N., Singer, B. B., & Tilki, D. (2008). Endothelial and hematopoietic progenitor cells (EPCs and HPCs): Hand in hand fate determining partners for cancer cells. Stem Cell Reviews, 4(3), 169–177.PubMedCrossRefGoogle Scholar
  23. 23.
    Ribatti, D. (2004). The involvement of endothelial progenitor cells in tumor angiogenesis. Journal of Cellular and Molecular Medicine, 8(3), 294–300.PubMedCrossRefGoogle Scholar
  24. 24.
    Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95(4), 343–353.PubMedCrossRefGoogle Scholar
  25. 25.
    Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.PubMedGoogle Scholar
  26. 26.
    Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., et al. (2007). Human CD34 + AC133 + VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35(7), 1109–1118.PubMedCrossRefGoogle Scholar
  27. 27.
    Aoki, M., Yasutake, M., & Murohara, T. (2004). Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells, 22(6), 994–1002.PubMedCrossRefGoogle Scholar
  28. 28.
    Navarro-Sobrino, M., Rosell, A., Hernandez-Guillamon, M., Penalba, A., Ribo, M., Alvarez-Sabin, J., et al. (2010). Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular Research, 80(3), 317–323.PubMedCrossRefGoogle Scholar
  29. 29.
    Rae, P. C., Kelly, R. D., Egginton, S., & St John, J. C. (2011). Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vascular Cell, 3, 11.PubMedCrossRefGoogle Scholar
  30. 30.
    Bertolini, F., Shaked, Y., Mancuso, P., & Kerbel, R. S. (2006). The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nature Reviews. Cancer, 6(11), 835–845.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang, E. H., & Wicha, M. S. (2008). Colon cancer stem cells: Implications for prevention and therapy. Trends in Molecular Medicine, 14(11), 503–509.PubMedCrossRefGoogle Scholar
  32. 32.
    Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.PubMedGoogle Scholar
  33. 33.
    Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., et al. (1997). A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood, 90(12), 5013–5021.PubMedGoogle Scholar
  34. 34.
    Ribatti, D. (2007). The discovery of endothelial progenitor cells. An historical review. Leukemia Research, 31(4), 439–444.PubMedCrossRefGoogle Scholar
  35. 35.
    Reinders, M. E., Rabelink, T. J., & Briscoe, D. M. (2006). Angiogenesis and endothelial cell repair in renal disease and allograft rejection. Journal of the American Society of Nephrology, 17(4), 932–942.PubMedCrossRefGoogle Scholar
  36. 36.
    Faltas, B., Zeidan, A., Peters, K., Das, A., Joudeh, J., Navaraj, A., et al. (2011). Identifying circulating tumor stem cells that matter: The key to prognostication and therapeutic targeting. Journal of Clinical Oncology, 29(21), 2946–2947.PubMedCrossRefGoogle Scholar
  37. 37.
    Florek, M., Haase, M., Marzesco, A. M., Freund, D., Ehninger, G., Huttner, W. B., et al. (2005). Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell and Tissue Research, 319(1), 15–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Iinuma, H., Watanabe, T., Mimori, K., Adachi, M., Hayashi, N., Tamura, J., et al. (2011). Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. Journal of Clinical Oncology, 29(12), 1547–1555.PubMedCrossRefGoogle Scholar
  39. 39.
    Sullivan, J. P., Spinola, M., Dodge, M., Raso, M. G., Behrens, C., Gao, B., et al. (2010). Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research, 70(23), 9937–9948.PubMedCrossRefGoogle Scholar
  40. 40.
    Matsumoto, T., & Mugishima, H. (2006). Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. Journal of Atherosclerosis and Thrombosis, 13(3), 130–135.PubMedCrossRefGoogle Scholar
  41. 41.
    Ahlbrecht, K., Schmitz, J., Seay, U., Schwarz, C., Mittnacht-Kraus, R., Gaumann, A., et al. (2008). Spatiotemporal expression of flk-1 in pulmonary epithelial cells during lung development. American Journal of Respiratory Cell and Molecular Biology, 39(2), 163–170.PubMedCrossRefGoogle Scholar
  42. 42.
    Matsumoto, T., & Claesson-Welsh, L. (2001). VEGF receptor signal transduction. Science’s STKE, 2001(112), RE21.PubMedGoogle Scholar
  43. 43.
    Shibuya, M. (2006). Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. Journal of Biochemistry and Molecular Biology, 39(5), 469–478.PubMedCrossRefGoogle Scholar
  44. 44.
    Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P., & Deliliers, G. L. (2001). Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. British Journal of Haematology, 115(1), 186–194.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaushal, S., Amiel, G. E., Guleserian, K. J., Shapira, O. M., Perry, T., Sutherland, F. W., et al. (2001). Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Medicine, 7(9), 1035–1040.PubMedCrossRefGoogle Scholar
  46. 46.
    Mohle, R., Bautz, F., Rafii, S., Moore, M. A., Brugger, W., & Kanz, L. (1998). The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood, 91(12), 4523–4530.PubMedGoogle Scholar
  47. 47.
    Yarden, Y., Kuang, W. J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T. J., et al. (1987). Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO Journal, 6(11), 3341–3351.PubMedGoogle Scholar
  48. 48.
    Sharma, S., Gurudutta, G. U., Satija, N. K., Pati, S., Afrin, F., Gupta, P., et al. (2006). Stem cell c-KIT and HOXB4 genes: Critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells and Development, 15(6), 755–778.PubMedCrossRefGoogle Scholar
  49. 49.
    Baggiolini, M. (2001). Chemokines in pathology and medicine. Journal of Internal Medicine, 250(2), 91–104.PubMedCrossRefGoogle Scholar
  50. 50.
    Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. The International Journal of Biochemistry & Cell Biology, 31(10), 1037–1051.CrossRefGoogle Scholar
  51. 51.
    Sharpe, E. E., III, Teleron, A. A., Li, B., Price, J., Sands, M. S., Alford, K., et al. (2006). The origin and in vivo significance of murine and human culture-expanded endothelial progenitor cells. American Journal of Pathology, 168(5), 1710–1721.PubMedCrossRefGoogle Scholar
  52. 52.
    Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288–293.PubMedCrossRefGoogle Scholar
  53. 53.
    Duan, H. X., Cheng, L. M., Wang, J., Hu, L. S., & Lu, G. X. (2006). Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biology International, 30(12), 1018–1027.PubMedCrossRefGoogle Scholar
  54. 54.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.PubMedCrossRefGoogle Scholar
  55. 55.
    Kleinman, M. E., Greives, M. R., Churgin, S. S., Blechman, K. M., Chang, E. I., Ceradini, D. J., et al. (2007). Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2664–2670.PubMedCrossRefGoogle Scholar
  56. 56.
    Rabelink, T. J., de Boer, H. C., de Koning, E. J., & van Zonneveld, A. J. (2004). Endothelial progenitor cells: More than an inflammatory response? Arteriosclerosis, Thrombosis, and Vascular Biology, 24(5), 834–838.PubMedCrossRefGoogle Scholar
  57. 57.
    Safran, M., & Kaelin, W. G., Jr. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. The Journal of Clinical Investigation, 111(6), 779–783.PubMedGoogle Scholar
  58. 58.
    Hoenig, M. R., Bianchi, C., & Sellke, F. W. (2008). Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: A unifying hypothesis. Current Drug Targets, 9(5), 422–435.PubMedCrossRefGoogle Scholar
  59. 59.
    Luttun, A., Carmeliet, G., & Carmeliet, P. (2002). Vascular progenitors: From biology to treatment. Trends in Cardiovascular Medicine, 12(2), 88–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Fox, A., Smythe, J., Fisher, N., Tyler, M. P., McGrouther, D. A., Watt, S. M., et al. (2008). Mobilization of endothelial progenitor cells into the circulation in burned patients. British Journal of Surgery, 95(2), 244–251.PubMedCrossRefGoogle Scholar
  61. 61.
    Heeschen, C., Aicher, A., Lehmann, R., Fichtlscherer, S., Vasa, M., Urbich, C., et al. (2003). Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood, 102(4), 1340–1346.PubMedCrossRefGoogle Scholar
  62. 62.
    Bahlmann, F. H., De Groot, K., Spandau, J. M., Landry, A. L., Hertel, B., Duckert, T., et al. (2004). Erythropoietin regulates endothelial progenitor cells. Blood, 103(3), 921–926.PubMedCrossRefGoogle Scholar
  63. 63.
    Ito, H., Rovira, I. I., Bloom, M. L., Takeda, K., Ferrans, V. J., Quyyumi, A. A., et al. (1999). Endothelial progenitor cells as putative targets for angiostatin. Cancer Research, 59(23), 5875–5877.PubMedGoogle Scholar
  64. 64.
    Urbich, C., Aicher, A., Heeschen, C., Dernbach, E., Hofmann, W. K., Zeiher, A. M., et al. (2005). Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. Journal of Molecular and Cellular Cardiology, 39(5), 733–742.PubMedCrossRefGoogle Scholar
  65. 65.
    Westerweel, P. E., Visseren, F. L., Hajer, G. R., Olijhoek, J. K., Hoefer, I. E., de Bree, P., et al. (2008). Endothelial progenitor cell levels in obese men with the metabolic syndrome and the effect of simvastatin monotherapy vs. simvastatin/ezetimibe combination therapy. European Heart Journal, 29(22), 2808–2817.PubMedCrossRefGoogle Scholar
  66. 66.
    Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jurgens, K., et al. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation, 109(2), 220–226.PubMedCrossRefGoogle Scholar
  67. 67.
    Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(5), 997–1004.PubMedCrossRefGoogle Scholar
  68. 68.
    Papayannopoulou, T. (2004). Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood, 103(5), 1580–1585.PubMedCrossRefGoogle Scholar
  69. 69.
    Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348(7), 593–600.PubMedCrossRefGoogle Scholar
  70. 70.
    Wilson, P. W., Castelli, W. P., & Kannel, W. B. (1987). Coronary risk prediction in adults (the Framingham Heart Study). The American Journal of Cardiology, 59(14), 91G–94G.PubMedCrossRefGoogle Scholar
  71. 71.
    Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3422–3427.PubMedGoogle Scholar
  72. 72.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436.PubMedCrossRefGoogle Scholar
  73. 73.
    Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92(2), 362–367.PubMedGoogle Scholar
  74. 74.
    Ohtsuka, M., Takano, H., Zou, Y., Toko, H., Akazawa, H., Qin, Y., et al. (2004). Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. The FASEB Journal, 18(7), 851–853.Google Scholar
  75. 75.
    Ince, H., Petzsch, M., Kleine, H. D., Eckard, H., Rehders, T., Burska, D., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112(9 Suppl), I73–I80.PubMedGoogle Scholar
  76. 76.
    Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMedCrossRefGoogle Scholar
  77. 77.
    Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017.PubMedCrossRefGoogle Scholar
  78. 78.
    Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., Fernandez, M. E., Penarrubia, M. J., de la, F. L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95(7), 742–748.PubMedCrossRefGoogle Scholar
  79. 79.
    Schachinger, V., Assmus, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44(8), 1690–1699.PubMedCrossRefGoogle Scholar
  80. 80.
    Leistner, D. M., Fischer-Rasokat, U., Honold, J., Seeger, F. H., Schachinger, V., Lehmann, R. et al. (2011). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): Final 5-year results suggest long-term safety and efficacy. Clinical Research in Cardiology.Google Scholar
  81. 81.
    Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.PubMedCrossRefGoogle Scholar
  82. 82.
    Wei, H. M., Wong, P., Hsu, L. F., & Shim, W. (2009). Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: Current status and future directions. Singapore Medical Journal, 50(10), 935–942.PubMedGoogle Scholar
  83. 83.
    Tse, H. F., Kwong, Y. L., Chan, J. K., Lo, G., Ho, C. L., & Lau, C. P. (2003). Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 361(9351), 47–49.PubMedCrossRefGoogle Scholar
  84. 84.
    Hamano, K., Nishida, M., Hirata, K., Mikamo, A., Li, T. S., Harada, M., et al. (2001). Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: Clinical trial and preliminary results. Japanese Circulation Journal, 65(9), 845–847.PubMedCrossRefGoogle Scholar
  85. 85.
    Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.PubMedCrossRefGoogle Scholar
  86. 86.
    Hattori, R., & Matsubara, H. (2004). Therapeutic angiogenesis for severe ischemic heart diseases by autologous bone marrow cells transplantation. Molecular and Cellular Biochemistry, 264(1–2), 151–155.PubMedCrossRefGoogle Scholar
  87. 87.
    Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., et al. (2002). Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet, 360(9331), 427–435.PubMedCrossRefGoogle Scholar
  88. 88.
    Matoba, S., Tatsumi, T., Murohara, T., Imaizumi, T., Katsuda, Y., Ito, M., et al. (2008). Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. American Heart Journal, 156(5), 1010–1018.PubMedCrossRefGoogle Scholar
  89. 89.
    Fadini, G. P., Avogaro, A., Ferraccioli, G., & Agostini, C. (2010). Endothelial progenitors in pulmonary hypertension: New pathophysiology and therapeutic implications. European Respiratory Journal, 35(2), 418–425.PubMedCrossRefGoogle Scholar
  90. 90.
    Fukumoto, Y., & Shimokawa, H. (2011). Recent progress in the management of pulmonary hypertension. Circulation Journal, 75(8), 1801–1810.PubMedCrossRefGoogle Scholar
  91. 91.
    Diller, G. P., van Eijl, S., Okonko, D. O., Howard, L. S., Ali, O., Thum, T., et al. (2008). Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation, 117(23), 3020–3030.PubMedCrossRefGoogle Scholar
  92. 92.
    Fadini, G. P., Schiavon, M., Rea, F., Avogaro, A., & Agostini, C. (2007). Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 176(7), 724–725.PubMedGoogle Scholar
  93. 93.
    Nathan, S. D., Noble, P. W., & Tuder, R. M. (2007). Idiopathic pulmonary fibrosis and pulmonary hypertension: Connecting the dots. American Journal of Respiratory and Critical Care Medicine, 175(9), 875–880.PubMedCrossRefGoogle Scholar
  94. 94.
    Thebaud, B., & Abman, S. H. (2007). Bronchopulmonary dysplasia: Where have all the vessels gone? roles of angiogenic growth factors in chronic lung disease. American Journal of Respiratory and Critical Care Medicine, 175(10), 978–985.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao, Y. D., Courtman, D. W., Deng, Y., Kugathasan, L., Zhang, Q., & Stewart, D. J. (2005). Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: Efficacy of combined cell and eNOS gene therapy in established disease. Circulation Research, 96(4), 442–450.PubMedCrossRefGoogle Scholar
  96. 96.
    Yip, H. K., Chang, L. T., Sun, C. K., Sheu, J. J., Chiang, C. H., Youssef, A. A., et al. (2008). Autologous transplantation of bone marrow-derived endothelial progenitor cells attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Critical Care Medicine, 36(3), 873–880.PubMedCrossRefGoogle Scholar
  97. 97.
    Takahashi, M., Nakamura, T., Toba, T., Kajiwara, N., Kato, H., & Shimizu, Y. (2004). Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Engineering, 10(5–6), 771–779.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang, X. X., Zhang, F. R., Shang, Y. P., Zhu, J. H., Xie, X. D., Tao, Q. M., et al. (2007). Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial. Journal of the American College of Cardiology, 49(14), 1566–1571.PubMedCrossRefGoogle Scholar
  99. 99.
    Shaked, Y., Henke, E., Roodhart, J. M., Mancuso, P., Langenberg, M. H., Colleoni, M., et al. (2008). Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: Implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell, 14(3), 263–273.PubMedCrossRefGoogle Scholar
  100. 100.
    Toshner, M., Voswinckel, R., Southwood, M., Al Lamki, R., Howard, L. S., Marchesan, D., et al. (2009). Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 180(8), 780–787.PubMedCrossRefGoogle Scholar
  101. 101.
    Marsboom, G., Pokreisz, P., Gheysens, O., Vermeersch, P., Gillijns, H., Pellens, M., et al. (2008). Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells, 26(4), 1017–1026.PubMedCrossRefGoogle Scholar
  102. 102.
    Sala, E., Villena, C., Balaguer, C., Rios, A., Fernandez-Palomeque, C., Cosio, B. G., et al. (2010). Abnormal levels of circulating endothelial progenitor cells during exacerbations of COPD. Lung, 188(4), 331–338.PubMedCrossRefGoogle Scholar
  103. 103.
    Valipour, A., Schreder, M., Wolzt, M., Saliba, S., Kapiotis, S., Eickhoff, P., et al. (2008). Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clinical Science (London, England), 115(7), 225–232.CrossRefGoogle Scholar
  104. 104.
    Takahashi, T., Suzuki, S., Kubo, H., Yamaya, M., Kurosawa, S., & Kato, M. (2011). Impaired endothelial progenitor cell mobilization and colony-forming capacity in chronic obstructive pulmonary disease. Respirology, 16(4), 680–687.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamada, M., Kubo, H., Ishizawa, K., Kobayashi, S., Shinkawa, M., & Sasaki, H. (2005). Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: Evidence that bone marrow derived cells contribute to lung repair. Thorax, 60(5), 410–413.PubMedCrossRefGoogle Scholar
  106. 106.
    Burnham, E. L., Taylor, W. R., Quyyumi, A. A., Rojas, M., Brigham, K. L., & Moss, M. (2005). Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 172(7), 854–860.PubMedCrossRefGoogle Scholar
  107. 107.
    Balasubramaniam, V., Mervis, C. F., Maxey, A. M., Markham, N. E., & Abman, S. H. (2007). Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(5), L1073–L1084.PubMedCrossRefGoogle Scholar
  108. 108.
    Borghesi, A., Massa, M., Campanelli, R., Bollani, L., Tzialla, C., Figar, T. A., et al. (2009). Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine, 180(6), 540–546.PubMedCrossRefGoogle Scholar
  109. 109.
    Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 7(11), 1194–1201.PubMedCrossRefGoogle Scholar
  110. 110.
    Peters, B. A., Diaz, L. A., Polyak, K., Meszler, L., Romans, K., Guinan, E. C., et al. (2005). Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Medicine, 11(3), 261–262.PubMedCrossRefGoogle Scholar
  111. 111.
    Mancuso, P., Burlini, A., Pruneri, G., Goldhirsch, A., Martinelli, G., & Bertolini, F. (2001). Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 97(11), 3658–3661.PubMedCrossRefGoogle Scholar
  112. 112.
    Kerbel, R. S. (2008). Tumor angiogenesis. The New England Journal of Medicine, 358(19), 2039–2049.PubMedCrossRefGoogle Scholar
  113. 113.
    Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., et al. (2006). Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Research, 66(14), 7341–7347.PubMedCrossRefGoogle Scholar
  114. 114.
    Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8(8), 592–603.PubMedCrossRefGoogle Scholar
  115. 115.
    Shaked, Y., Ciarrocchi, A., Franco, M., Lee, C. R., Man, S., Cheung, A. M., et al. (2006). Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 313(5794), 1785–1787.PubMedCrossRefGoogle Scholar
  116. 116.
    Shirakawa, K., Shibuya, M., Heike, Y., Takashima, S., Watanabe, I., Konishi, F., et al. (2002). Tumor-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. International Journal of Cancer, 99(3), 344–351.CrossRefGoogle Scholar
  117. 117.
    Sussman, L. K., Upalakalin, J. N., Roberts, M. J., Kocher, O., & Benjamin, L. E. (2003). Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biology & Therapy, 2(3), 255–256.CrossRefGoogle Scholar
  118. 118.
    Yu, D., Sun, X., Qiu, Y., Zhou, J., Wu, Y., Zhuang, L., et al. (2007). Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clinical Cancer Research, 13(13), 3814–3824.PubMedCrossRefGoogle Scholar
  119. 119.
    Gunsilius, E., Tschmelitsch, J., Eberwein, M., Schwelberger, H., Spizzo, G., Kahler, C. M., et al. (2002). In vivo release of vascular endothelial growth factor from colorectal carcinomas. Oncology, 62(4), 313–317.PubMedCrossRefGoogle Scholar
  120. 120.
    Zheng, P. P., Hop, W. C., Luider, T. M., Sillevis Smitt, P. A., & Kros, J. M. (2007). Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Annals of Neurology, 62(1), 40–48.PubMedCrossRefGoogle Scholar
  121. 121.
    Igreja, C., Courinha, M., Cachaco, A. S., Pereira, T., Cabecadas, J., da Silva, M. G., et al. (2007). Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica, 92(4), 469–477.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang, H., Vakil, V., Braunstein, M., Smith, E. L., Maroney, J., Chen, L., et al. (2005). Circulating endothelial progenitor cells in multiple myeloma: Implications and significance. Blood, 105(8), 3286–3294.PubMedCrossRefGoogle Scholar
  123. 123.
    Rigolin, G. M., Mauro, E., Ciccone, M., Fraulini, C., Sofritti, O., Castoldi, G., et al. (2007). Neoplastic circulating endothelial-like cells in patients with acute myeloid leukaemia. European Journal of Haematology, 78(5), 365–373.PubMedCrossRefGoogle Scholar
  124. 124.
    Wierzbowska, A., Robak, T., Krawczynska, A., Wrzesien-Kus, A., Pluta, A., Cebula, B., et al. (2005). Circulating endothelial cells in patients with acute myeloid leukemia. European Journal of Haematology, 75(6), 492–497.PubMedCrossRefGoogle Scholar
  125. 125.
    Auberger, J., Dlaska, M., Auberger, T., Gunsilius, E., Woll, E., & Hilbe, W. (2005). Increased CD133 expression in bone marrow of myelodysplastic syndromes. Leukemia Research, 29(9), 995–1001.PubMedCrossRefGoogle Scholar
  126. 126.
    Gao, D., Nolan, D. J., Mellick, A. S., Bambino, K., McDonnell, K., & Mittal, V. (2008). Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 319(5860), 195–198.PubMedCrossRefGoogle Scholar
  127. 127.
    Fontanini, G., Lucchi, M., Vignati, S., Mussi, A., Ciardiello, F., De Laurentiis, M., et al. (1997). Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: A prospective study. Journal of the National Cancer Institute, 89(12), 881–886.PubMedCrossRefGoogle Scholar
  128. 128.
    Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England Journal of Medicine, 355(24), 2542–2550.PubMedCrossRefGoogle Scholar
  129. 129.
    Reck, M., von Pawel, J., Zatloukal, P., Ramlau, R., Gorbounova, V., Hirsh, V., et al. (2009). Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. Journal of Clinical Oncology, 27(8), 1227–1234.PubMedCrossRefGoogle Scholar
  130. 130.
    Hilbe, W., Dirnhofer, S., Oberwasserlechner, F., Schmid, T., Gunsilius, E., Hilbe, G., et al. (2004). CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. Journal of Clinical Pathology, 57(9), 965–969.PubMedCrossRefGoogle Scholar
  131. 131.
    Pircher, A., Kahler, C. M., Skvortsov, S., Dlaska, M., Kawaguchi, G., Schmid, T., et al. (2008). Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer: A methodological challenge and an ongoing debate on the clinical relevance. Oncology Reports, 19(2), 345–352.PubMedGoogle Scholar
  132. 132.
    Bogos, K., Renyi-Vamos, F., Dobos, J., Kenessey, I., Tovari, J., Timar, J., et al. (2009). High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clinical Cancer Research, 15(5), 1741–1746.PubMedCrossRefGoogle Scholar
  133. 133.
    Furstenberger, G., von Moos, R., Lucas, R., Thurlimann, B., Senn, H. J., Hamacher, J., et al. (2006). Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. British Journal of Cancer, 94(4), 524–531.PubMedCrossRefGoogle Scholar
  134. 134.
    Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. The New England Journal of Medicine, 357(26), 2666–2676.PubMedCrossRefGoogle Scholar
  135. 135.
    Goodale, D., Phay, C., Brown, W., Gray-Statchuk, L., Furlong, P., Lock, M., et al. (2009). Flow cytometric assessment of monocyte activation markers and circulating endothelial cells in patients with localized or metastatic breast cancer. Cytometry. Part B, Clinical Cytometry, 76(2), 107–117.PubMedCrossRefGoogle Scholar
  136. 136.
    Goon, P. K., Lip, G. Y., Stonelake, P. S., & Blann, A. D. (2009). Circulating endothelial cells and circulating progenitor cells in breast cancer: Relationship to endothelial damage/dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia, 11(8), 771–779.PubMedGoogle Scholar
  137. 137.
    Naik, R. P., Jin, D., Chuang, E., Gold, E. G., Tousimis, E. A., Moore, A. L., et al. (2008). Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Research and Treatment, 107(1), 133–138.PubMedCrossRefGoogle Scholar
  138. 138.
    Ho, J. W., Pang, R. W., Lau, C., Sun, C. K., Yu, W. C., Fan, S. T., et al. (2006). Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology, 44(4), 836–843.PubMedCrossRefGoogle Scholar
  139. 139.
    Jakob, C., Sterz, J., Zavrski, I., Heider, U., Kleeberg, L., Fleissner, C., et al. (2006). Angiogenesis in multiple myeloma. European Journal of Cancer, 42(11), 1581–1590.PubMedCrossRefGoogle Scholar
  140. 140.
    Braunstein, M., Ozcelik, T., Bagislar, S., Vakil, V., Smith, E. L., Dai, K., et al. (2006). Endothelial progenitor cells display clonal restriction in multiple myeloma. BMC Cancer, 6, 161.PubMedCrossRefGoogle Scholar
  141. 141.
    Purhonen, S., Palm, J., Rossi, D., Kaskenpaa, N., Rajantie, I., Yla-Herttuala, S., et al. (2008). Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6620–6625.PubMedCrossRefGoogle Scholar
  142. 142.
    Kerbel, R. S., Benezra, R., Lyden, D. C., Hattori, K., Heissig, B., Nolan, D. J., et al. (2008). Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proceedings of the National Academy of Sciences of the United States of America, 105(34), E54.PubMedCrossRefGoogle Scholar
  143. 143.
    Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809.PubMedCrossRefGoogle Scholar
  144. 144.
    Duda, D. G., Cohen, K. S., Scadden, D. T., & Jain, R. K. (2007). A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nature Protocols, 2(4), 805–810.PubMedCrossRefGoogle Scholar
  145. 145.
    Steurer, M., Kern, J., Zitt, M., Amberger, A., Bauer, M., Gastl, G., et al. (2008). Quantification of circulating endothelial and progenitor cells: Comparison of quantitative PCR and four-channel flow cytometry. BMC Research Notes, 1, 71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thomas Resch
    • 1
    • 3
  • Andreas Pircher
    • 2
  • Christian M. Kähler
    • 3
  • Johann Pratschke
    • 1
  • Wolfgang Hilbe
    • 2
  1. 1.Center of Operative Medicine, Department of Visceral, Transplant, and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria
  2. 2.Department of Internal Medicine V, Hematology and OncologyMedical University InnsbruckInnsbruckAustria
  3. 3.Pneumology, Department of Internal Medicine IMedical University of InnsbruckInnsbruckAustria

Personalised recommendations