Stem Cell Reviews and Reports

, Volume 9, Issue 3, pp 313–325 | Cite as

Towards the Generation of Patient-Specific Patches for Cardiac Repair

  • Giancarlo Forte
  • Stefania Pagliari
  • Francesca Pagliari
  • Mitsuhiro Ebara
  • Paolo Di Nardo
  • Takao Aoyagi
Article

Abstract

Cardiovascular diseases represent the main cause of morbidity and mortality worldwide. Millions of people are affected by such diseases in the industrialized countries, with hundreds of thousands new cases diagnosed every year. Among cardiac diseases, heart failure is the most common end-stage pathology, leading to impaired cardiac output and cardiac performance as a result of the irreversible loss of contractile cardiomyocytes. Tissue engineering holds the promise to provide personalized solutions to the problem of cardiac muscle repair. Indeed, the identification of little reservoirs of stem and progenitor cells within every body district opened new perspectives to the setup of patient-specific protocols for cardiac diseases. Nonetheless, the results of the first pre-clinical and clinical trials in which adult stem/progenitor cells were adopted pointed at the route of delivery to the injured organ as well as at the cell source as the main issues for cardiac tissue engineers. In fact, when adult stem cells were directly injected into the myocardium or delivered through bloodstream to the heart, no or few cells could be found engrafted within host tissue few days after the administration. Renewed enthusiasm was generated by the techniques set up to enrich cardiomyocytes obtained by embryonic stem cells and by the recent disclosure of the protocols to obtain reprogrammed pluripotent cells or reprogrammed cardiomyocytes out of patients’ own somatic cells. In this context, additional efforts to setup efficient systems to deliver stem cells to the injured site are required. The application of forefront technologies to fabricate synthetic and hybrid scaffolds to be employed as cell delivery systems and the acknowledgement that surface physical, mechanical, chemical properties can exert specific effects on stem cells per se prompted new enthusiasm in the field. In this respect, a cardiac-specific scaffold should be able to comply with cardiac muscle architecture, be deformable as to indulge and possibly sustain cardiac contraction. As expected, such a scaffold should favor stem cell electromechanical coupling with host tissue, while promoting the vascularization of the newly-formed tissue.

Keywords

Adult stem cells Induced pluripotent stem cells Cardiac disease Biocompatible scaffolds Smart biomaterials 

References

  1. 1.
    Amado, L., Saliaris, A., Schuleri, K., St. John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogenic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.CrossRefPubMedGoogle Scholar
  2. 2.
    American Heart Association. (2010). Heart disease and stroke statistics-2010 update. Dallas, Texas: American Heart Association. © 2010, American Heart Association.Google Scholar
  3. 3.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.CrossRefPubMedGoogle Scholar
  4. 4.
    Arauchi, A., Shimizu, T., Yamato, M., Obara, T., & Okano, T. (2009). Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models. Tissue Engineering. Part A, 15, 3943–3949.CrossRefPubMedGoogle Scholar
  5. 5.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor cells for angiogenesis. Science, 275, 964–967.CrossRefPubMedGoogle Scholar
  6. 6.
    Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5, 1–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Badylak, S. F., Obermiller, J., Geddes, L., & Matheny, R. (2002). Extracellular matrix for myocardial repair. The Heart Surgery Forum, 6, E20–E26.Google Scholar
  8. 8.
    Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ishaemic myocardium. Nature, 428, 668–673.CrossRefPubMedGoogle Scholar
  9. 9.
    Bartunek, J., Vanderheyden, M., Vandekerckhove, B., Mansour, S., De Bruyne, B., De Bondt, P., et al. (2005). Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation, 112, 178–183.Google Scholar
  10. 10.
    Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14068–14073.CrossRefPubMedGoogle Scholar
  11. 11.
    Beltrami, A. P., Cesselli, D., Bergamini, N., Marcon, P., Rigo, S., Puppato, E., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110, 3438–3446.CrossRefPubMedGoogle Scholar
  12. 12.
    Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344, 1750–1757.CrossRefPubMedGoogle Scholar
  13. 13.
    Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for Cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMedGoogle Scholar
  14. 14.
    Braunwald, E., & Pfeffer, M. A. (1991). Ventricular enlargement and remodeling following acute myocardial infarction: Mechanisms and management. The American Journal of Cardiology, 68, 1D–6D.CrossRefPubMedGoogle Scholar
  15. 15.
    Bui, Q. T., Gertz, Z. M., & Wilensky, R. L. (2010). Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Research and Therapy, 1, 29–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Bursac, N., Loo, Y., Leong, K., & Tung, L. (2007). Novel anisotropic engineered cardiac tissues: Studies of electrical propagation. Biochemical and Biophysical Research Communications, 361, 847–853.CrossRefPubMedGoogle Scholar
  17. 17.
    Bursac, N., Papadaki, M., White, J. A., Eisenberg, S. R., Vunjak-Novakovic, G., & Freed, L. E. (2003). Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Engineering, 9, 1243–1253.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, G., & Hoffman, A. S. (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 373, 49–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, Q. Z., Ishii, H., Thouas, G. A., Lyon, A. R., Wright, J. S., Blaker, J. J., et al. (2010). An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 31, 3885–3893.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103, 8155–8160.CrossRefPubMedGoogle Scholar
  21. 21.
    Di Nardo, P., Forte, G., Ahluwalia, A., & Minieri, M. (2010). Cardiac progenitor cells: Potency and control. Journal of Cellular Physiology, 224, 590–600.CrossRefPubMedGoogle Scholar
  22. 22.
    Dixon, J. A., Gorman, R. C., Stroud, R. E., Bouges, S., Hirotsugu, H., Gorman, J. H., III, et al. (2009). Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation, 120, S220–S229.CrossRefPubMedGoogle Scholar
  23. 23.
    Ebara, M., Hoffman, J. M., Hoffman, A. S., & Stayton, P. S. (2006). Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab on a Chip, 6, 843–848.CrossRefPubMedGoogle Scholar
  24. 24.
    Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., & Okano, T. (2004). Immobilization of cell adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and non-invasive cell harvest. Tissue Engineering, 10, 1125–1135.PubMedGoogle Scholar
  25. 25.
    Ebara, M., Yamato, M., Hirose, M., Aoyagi, T., Kikuchi, A., Sakai, K., et al. (2003). Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules, 4, 344–349.CrossRefPubMedGoogle Scholar
  26. 26.
    Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7, 1003–1010.CrossRefPubMedGoogle Scholar
  27. 27.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.CrossRefPubMedGoogle Scholar
  28. 28.
    Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferreira, L. S., Gerecht, S., Shieh, H. F., Watson, N., Rupnick, M. A., Dallabrida, S. M., et al. (2007). Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circulation Research, 101, 286–294.CrossRefPubMedGoogle Scholar
  30. 30.
    Fischer-Rasokat, U., Assmus, B., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemicdilated cardiomyopathy: Final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circulation: Heart Failure, 2, 417–423.CrossRefPubMedGoogle Scholar
  31. 31.
    Food and Drug Administration 21 CFR 1271 (2006).Google Scholar
  32. 32.
    Formigli, L., Francini, F., Tani, A., Squecco, R., Nosi, D., Polidori, L., et al. (2005). Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favoured by direct cell-cell contacts and relaxin treatment. American Journal of Physiology. Cell Physiology, 288, C795–C804.CrossRefPubMedGoogle Scholar
  33. 33.
    Forte, G., Carotenuto, F., Pagliari, F., Pagliari, S., Cossa, P., Fiaccavento, R., et al. (2008). Criticatility of the biological and physical stimuli array inducing resident stem cell determination. Stem Cells, 26, 2093–2103.CrossRefPubMedGoogle Scholar
  34. 34.
    Forte, G., Franzese, O., Pagliari, S., Pagliari, F., Cossa, P., Laudisi, A., et al. (2009). Interfacing Sca-1pos Mesenchymal stem cells with biocompatible scaffolds with different chemical composition and geometry. Journal of Biomedicine and Biotechnology. doi:10.1155/2009/910610.
  35. 35.
    Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells, 24, 23–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Foudah, D., Redaelli, S., Donzelli, E., Bentivegna, A., Miloso, M., Dalprà, L., et al. (2009). Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Research, 17, 1025–1039.CrossRefPubMedGoogle Scholar
  37. 37.
    Fujiwara, M., Yan, P., Otsuji, T. G., Narazaki, G., Uosaki, H., Fukushima, H., et al. (2011). Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One, 6, e16734.CrossRefPubMedGoogle Scholar
  38. 38.
    Furth, M. E., Atala, A., & Van Dyke, M. E. (2007). Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 28, 5068–5073.CrossRefPubMedGoogle Scholar
  39. 39.
    Gajarsa, J. J., & Kloner, R. A. (2010). Left ventricular remodeling in the post-infarction heart: A review of cellular, molecular mechanisms, and therapeutic modalities. Heart Failure Reviews. doi:10.1007/s10741-010-9181-7.
  40. 40.
    Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M., & Caplan, L. (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells, Tissues, Organs, 169, 12–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27, 3675–3683.PubMedGoogle Scholar
  42. 42.
    Godier-Furnémont, A. F., Martens, T. P., Koeckert, M. S., Wan, L., Parks, J., Arai, K., et al. (2011). Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 108, 7974–7979.CrossRefPubMedGoogle Scholar
  43. 43.
    Hata, H., Matsumiya, G., Miyagawa, S., Kondoh, H., Kawaguchi, N., Matsuura, N., et al. (2009). Grafted skeletal myoblasts sheets attenuate myocardial remodelling in pacing-induced canine heart failure model. The Journal of Thoracic and Cardiovascular Surgery, 138, 460–467.CrossRefGoogle Scholar
  44. 44.
    Hertz, M. I., Aurora, P., Christie, J. D., Dobbels, F., Edwards, L. B., Kirk, R., et al. (2009). Scientific registry of the international society for heart and lung transplantation. The Journal of Heart and Lung Transplantation, 28, 989–1049.CrossRefPubMedGoogle Scholar
  45. 45.
    Hoshiba, T., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Advanced Materials, 10, 1717–1728.Google Scholar
  46. 46.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.CrossRefPubMedGoogle Scholar
  47. 47.
    Itzhaki-Alfia, A., Leor, J., Raanani, E., Sternik, L., Spiegelstein, D., Netser, S., et al. (2009). Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation, 120, 2559–2566.CrossRefPubMedGoogle Scholar
  48. 48.
    Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27, 459–461.CrossRefPubMedGoogle Scholar
  49. 49.
    Kelly, D. J., Rosen, A. B., Schuldt, A. J. T., Doronin, S. V., Potapova, I. A., Azeloglu, E. U., et al. (2009). Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Engineering. Part A, 15, 2189–2201.CrossRefPubMedGoogle Scholar
  50. 50.
    Kim, D. H., Lipke, E. A., Kim, P., Cheong, R., Thompson, S., Delannoy, M., et al. (2010). Nanoscalecues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 107, 565–570.CrossRefPubMedGoogle Scholar
  51. 51.
    Kochupura, P. V., Azeloglu, E. U., Kelly, D. J., Doronin, S. V., Badylak, S. F., Krukenkamp, I. B., et al. (2005). Tissue engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation, 112, I144–I149.PubMedGoogle Scholar
  52. 52.
    Kofidis, T., Lebl, D. R., Swijnenburg, R. J., Greeve, J. M., Klima, U., & Robbins, R. C. (2006). Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. European Journal of Cardio-Thoracic Surgery, 29, 50–55.CrossRefPubMedGoogle Scholar
  53. 53.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytesderived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.CrossRefPubMedGoogle Scholar
  54. 54.
    Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.CrossRefPubMedGoogle Scholar
  55. 55.
    Levenberg, S., Ferreira, L. S., Chen-Konak, L., Kraehenbuehl, T. P., & Langer, R. (2010). Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nature Protocols, 5, 1115–1126.CrossRefPubMedGoogle Scholar
  56. 56.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 4391–4396.CrossRefPubMedGoogle Scholar
  57. 57.
    Mandoli, C., Pagliari, F., Pagliari, S., Forte, G., Di Nardo, P., Licoccia, S., et al. (2010). Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Advanced Functional Materials, 20, 1617–1624.CrossRefGoogle Scholar
  58. 58.
    Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 11, 228–232.CrossRefPubMedGoogle Scholar
  59. 59.
    Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60, 277–285.CrossRefPubMedGoogle Scholar
  60. 60.
    Matsuura, K., Honda, A., Nagai, T., Fukushima, N., Iwanaga, K., Tokunaga, M., et al. (2009). Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. The Journal of Clinical Investigation, 119, 2204–2217.PubMedGoogle Scholar
  61. 61.
    Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRefPubMedGoogle Scholar
  62. 62.
    Menasché, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200.CrossRefPubMedGoogle Scholar
  63. 63.
    Menei, P., Montero-Menei, C., Venier, M. C., & Benoit, J. P. (2005). Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opinion on Drug Delivery, 2, 363–376.CrossRefPubMedGoogle Scholar
  64. 64.
    Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Natural Medicine, 12, 459–465.CrossRefGoogle Scholar
  65. 65.
    Momin, E. N., Vela, G., Zaidi, H. A., & Quiñones-Hinojosa, A. (2010). The oncogenic potential of mesenchymal stem cells in the treatment of cancer: Directions for future research. Current Immunology Reviews, 6, 137–148.CrossRefPubMedGoogle Scholar
  66. 66.
    Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.CrossRefPubMedGoogle Scholar
  67. 67.
    Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107, 14152–14157.CrossRefPubMedGoogle Scholar
  68. 68.
    Nesselmann, C., Ma, N., Bieback, K., Wagner, W., Ho, A., Konttinen, Y. T., et al. (2008). Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine, 12, 1795–1810.CrossRefPubMedGoogle Scholar
  69. 69.
    Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004.Google Scholar
  70. 70.
    Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. The FASEB Journal, 21, 1345–1357.CrossRefGoogle Scholar
  71. 71.
    Okita, K., & Yamanaka, S. (2010). Induction of pluripotency by defined factors. Experimental Cell Research, 316, 2565–2570.CrossRefPubMedGoogle Scholar
  72. 72.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 221–229.CrossRefGoogle Scholar
  73. 73.
    Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of the United States of America, 98, 10344–10349.CrossRefGoogle Scholar
  74. 74.
    Ota, T., Gilbert, T. W., Badylak, S. F., Schwartzman, D., & Zenati, M. A. (2007). Electromechanical characterization of a tissue engineered myocardial patch derived from extracellular matrix. The Journal of Thoracic and Cardiovascular Surgery, 133, 979–985.CrossRefPubMedGoogle Scholar
  75. 75.
    Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.CrossRefPubMedGoogle Scholar
  76. 76.
    Pagliari, S., Vilela-Silva, A. C., Forte, G., Pagliari, F., Mandoli, C., Vozzi, G., et al. (2010). Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. Advanced Materials, 23, 514–518.CrossRefPubMedGoogle Scholar
  77. 77.
    Perin, E. C., & Lopez, J. (2006). Methods in stem cell delivery in cardiac diseases. Nature Clinical Practice Cardiovascular Medicine, 3, S1.CrossRefGoogle Scholar
  78. 78.
    Pietronave, S., Forte, G., Locarno, D., Merlin, S., Zamperone, A., Nicotra, G., et al. (2010). Agonist monoclonal antibodies against HGF receptor protect cardiac muscle cells from apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 298, H1155–H1165.CrossRefPubMedGoogle Scholar
  79. 79.
    Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. New England Journal of Medicine, 346, 5–15.CrossRefPubMedGoogle Scholar
  80. 80.
    Radisic, M., Fast, V. G., Sharifov, O. F., Iyer, R. K., Park, H., & Vunjak-Novakovic, G. (2009). Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Engineering. Part A, 15, 851–860.CrossRefPubMedGoogle Scholar
  81. 81.
    Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.CrossRefPubMedGoogle Scholar
  82. 82.
    Reinecke, H., Minami, E., Poppa, V., & Murry, C. E. (2004). Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 94, e56–e60.CrossRefPubMedGoogle Scholar
  83. 83.
    Reing, J. E., Brown, B. N., Daly, K. A., Freund, J. M., Gilbert, T. W., Hsiong, S. X., et al. (2010). The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials, 31, 8626–8633.CrossRefPubMedGoogle Scholar
  84. 84.
    Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112, I135–I143.CrossRefPubMedGoogle Scholar
  85. 85.
    Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 17783–17788.CrossRefPubMedGoogle Scholar
  86. 86.
    Singelyn, J. M., & Christman, K. L. (2010). Injectable materials for the treatment of myocardial infarction and heart failure: The promise of decellularized matrices. Journal of Cardiovascular Translational Research, 3, 478–486.CrossRefPubMedGoogle Scholar
  87. 87.
    Smits, A. M., van Vliet, P., Metz, C. H., Korfage, T., Sluijter, J. P. G., Doevendans, P. A., et al. (2009). Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: An in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 4, 232–243.CrossRefPubMedGoogle Scholar
  88. 88.
    Song, H., Yoon, C., Kattman, S. J., Dengler, J., Massé, S., ThushaanthiniThavaratnam, T., et al. (2010). Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences of the United States of America, 103, 3329–3334.CrossRefGoogle Scholar
  89. 89.
    Suarez-Alvarez, B., Rodriguez, R. M., Calvanese, V., Blanco-Gelaz, M. A., Suhr, S. T., Ortega, F., et al. (2010). Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One, 5, e10192.CrossRefPubMedGoogle Scholar
  90. 90.
    Sumide, T., Nishida, K., Yamato, M., Ide, T., Hayashida, Y., Watanabe, K., et al. (2006). Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. The FASEB Journal, 20, 392–394.Google Scholar
  91. 91.
    Tomescot, A., Leschik, J., Bellamy, V., Dubois, G., Messas, E., Bruneval, P., et al. (2007). Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells, 25, 2200–2205.CrossRefPubMedGoogle Scholar
  92. 92.
    Tulloch, N. L., Muskheli, V., Razumova, M. V., Korte, F. S., Regnier, M., Hauch, K. D., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109, 47–59.CrossRefPubMedGoogle Scholar
  93. 93.
    Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, & J. M., Lee, T. (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. Journal of Cellular Physiology, 194–201.Google Scholar
  94. 94.
    Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16, 169–187.CrossRefPubMedGoogle Scholar
  95. 95.
    Wagers, A. J., Sherwood, R. I., Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297, 2256–2259.CrossRefPubMedGoogle Scholar
  96. 96.
    Yacoub, M. H., & Takkenberg, J. J. M. (2005). Will heart valve tissue engineering change the world? Nature Clinical Practice Cardiovascular Medicine, 2, 60–61.CrossRefPubMedGoogle Scholar
  97. 97.
    Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465, 704–712.CrossRefPubMedGoogle Scholar
  98. 98.
    Yu, J., Du, K. T., Fang, Q., Gu, Y., Mihardja, S. S., Sievers, R. E., et al. (2010). The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials, 31, 7012–7020.CrossRefPubMedGoogle Scholar
  99. 99.
    Zakharova, L., Mastroeni, D., Mutlu, N., Molina, M., Goldman, S., Diethrich, E., et al. (2010). Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 87, 40–49.CrossRefPubMedGoogle Scholar
  100. 100.
    Zhao, T., Zhang, Z. N., Rong, Z., Xu, Y. (2011) Immunogenicity of induced pluripotent stem cells. doi:10.1038/nature10135.
  101. 101.
    Zimmermann, W. H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12, 452–458.CrossRefPubMedGoogle Scholar
  102. 102.
    Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., et al. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90, 223–230.CrossRefPubMedGoogle Scholar
  103. 103.
    Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I. H., et al. (2009). Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120, 1513–1523.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giancarlo Forte
    • 1
  • Stefania Pagliari
    • 2
  • Francesca Pagliari
    • 2
  • Mitsuhiro Ebara
    • 1
  • Paolo Di Nardo
    • 2
  • Takao Aoyagi
    • 1
  1. 1.Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Laboratorio di Cardiologia Molecolare e Cellulare, Dipartimento di Medicina InternaUniversità di“Tor Vergata”RomeItaly

Personalised recommendations