Advertisement

Stem Cell Reviews and Reports

, Volume 8, Issue 2, pp 435–444 | Cite as

Autologous Pluripotent Stem Cells Generated from Adult Mouse Testicular Biopsy

  • Kinarm Ko
  • Guangming Wu
  • Marcos J. Araúzo-Bravo
  • Julee Kim
  • Jury Francine
  • Boris Greber
  • Jörg Mühlisch
  • Jin Young Joo
  • Davood Sabour
  • Michael C. Frühwald
  • Natalia Tapia
  • Hans R. SchölerEmail author
Article

Introduction

Primordial germ cells (PGCs) are the precursors of the male and female gametes. At 6.25 days post coitum (dpc), PGCs are specified in the proximal epiblast [21] and then migrate through the hindgut into the developing gonads [27]. At 12.5 dpc, most PGCs have reached the gonads; after colonizing the gonads, female germ cells enter meiosis whereas male germ cells undergo mitotic arrest [25]. However, under certain conditions, male germ cells continue proliferating and give rise to embryonal carcinoma cells (ECs). ECs were the first pluripotent stem cells to be isolated and could give rise to teratomas containing tissues from all three germ layers [37]. In addition, after being cultured in specific culture conditions, isolated PGCs can also be dedifferentiated into pluripotent cells in vitro, termed embryonic germ (EG) cells [33]. Thus, highly specialized cells, such as the germ cells, can spontaneously dedifferentiate to a pluripotent state both in vitro and in vivo.

Spermato...

Keywords

Major Histocompatibility Complex Teratoma Pluripotent Cell Testicular Cell Oct4 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Jeanine Müller-Keuker for helping to generate Supplementary Fig. 1 and Anna Niehues for providing technical assistance with the experiments. This work was supported by the Max Planck Society, DFG grant SPP 1356 entitled “Pluripotency and Cellular Reprogramming” (SCHO 340/5-1), and BMBF grant entitled “Disease-specific iPS cells” (FKZ 01GN0811).

Supplementary material

12015_2011_9307_MOESM1_ESM.pdf (3.7 mb)
Supplementary Figure 1 (PDF 3791 kb)
12015_2011_9307_MOESM2_ESM.pdf (12 mb)
Supplementary Figure 2 (PDF 12307 kb)
12015_2011_9307_MOESM3_ESM.pdf (467 kb)
Supplementary Figure 3 (PDF 467 kb)
12015_2011_9307_MOESM4_ESM.doc (34 kb)
Supplementary Table 1 (DOC 33.5 kb)
Supplementary Video 1

(MOV 2787 kb)

References

  1. 1.
    Brinster, R. L., & Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11298–11302.PubMedCrossRefGoogle Scholar
  2. 2.
    Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52(1), 198–236.PubMedGoogle Scholar
  3. 3.
    Conrad, S., Renninger, M., Hennenlotter, J., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456(7220), 344–349.PubMedCrossRefGoogle Scholar
  4. 4.
    Eckardt, S., Leu, N. A., Bradley, H. L., et al. (2007). Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes & Development, 21(4), 409–419.CrossRefGoogle Scholar
  5. 5.
    Golestaneh, N., Kokkinaki, M., Pant, D., et al. (2009). Pluripotent stem cells derived from adult human testes. Stem Cells and Development, 18(8), 1115–1126.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.PubMedCrossRefGoogle Scholar
  7. 7.
    He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., & Dym, M. (2010). Isolation, characterization, and culture of human spermatogonia. Biology of Reproduction, 82(2), 363–372.PubMedCrossRefGoogle Scholar
  8. 8.
    Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.PubMedCrossRefGoogle Scholar
  9. 9.
    Huckins, C. (1971). The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. The Anatomical Record, 169(3), 533–557.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanatsu-Shinohara, M., Inoue, K., Lee, J., et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7), 1001–1012.PubMedCrossRefGoogle Scholar
  11. 11.
    Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., et al. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 69(2), 612–616.PubMedCrossRefGoogle Scholar
  12. 12.
    Kazuki, Y., Hoshiya, H., Kai, Y., et al. (2008). Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Therapy, 15(8), 617–624.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, J. B., Zaehres, H., Wu, G., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–650.PubMedCrossRefGoogle Scholar
  15. 15.
    Ko, K., Arauzo-Bravo, M. J., Kim, J., Stehling, M., & Scholer, H. R. (2010). Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols, 5(5), 921–928.PubMedCrossRefGoogle Scholar
  16. 16.
    Ko, K., Arauzo-Bravo, M. J., Tapia, N., et al. (2010). Human adult germline stem cells in question. Nature, 465(7301), E1. discussion E3.PubMedCrossRefGoogle Scholar
  17. 17.
    Ko, K., Reinhardt, P., Tapia, N., et al. (2011). Brief report: evaluating the potential of putative pluripotent cells derived from human testis. Stem Cells, 29(8), 1304–1309.PubMedCrossRefGoogle Scholar
  18. 18.
    Ko, K., Tapia, N., Wu, G., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell, 5(1), 87–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Kossack, N., Meneses, J., Shefi, S., et al. (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 27(1), 138–149.PubMedCrossRefGoogle Scholar
  20. 20.
    Kubota, H., Avarbock, M. R., & Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16489–16494.PubMedCrossRefGoogle Scholar
  21. 21.
    Lawson, K. A., & Hage, W. J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Foundation Symposium, 182, 68–84. discussion 84–91.PubMedGoogle Scholar
  22. 22.
    Looijenga, L. H., Stoop, H., de Leeuw, H. P., et al. (2003). POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Research, 63(9), 2244–2250.PubMedGoogle Scholar
  23. 23.
    Loya, K., Eggenschwiler, R., Ko, K., et al. (2009). Hepatic differentiation of pluripotent stem cells. Biological Chemistry, 390(10), 1047–1055.PubMedCrossRefGoogle Scholar
  24. 24.
    Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J., & Stewart, C. L. (1990). Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell, 62(2), 251–260.PubMedCrossRefGoogle Scholar
  25. 25.
    McLaren, A. (2003). Primordial germ cells in the mouse. Developmental Biology, 262(1), 1–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Mizrak, S. C., Chikhovskaya, J. V., Sadri-Ardekani, H., et al. (2010). Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 25(1), 158–167.PubMedCrossRefGoogle Scholar
  27. 27.
    Molyneaux, K. A., Stallock, J., Schaible, K., & Wylie, C. (2001). Time-lapse analysis of living mouse germ cell migration. Developmental Biology, 240(2), 488–498.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagano, M., Patrizio, P., & Brinster, R. L. (2002). Long-term survival of human spermatogonial stem cells in mouse testes. Fertility and Sterility, 78(6), 1225–1233.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakane, A., Kojima, Y., Hayashi, Y., et al. (2005). Effect of testicular biopsy in childhood on spermatogenesis, fertility, and paternity in adulthood–a mouse model study. Urology, 66(3), 682–686.PubMedCrossRefGoogle Scholar
  31. 31.
    Ogawa, T., Ohmura, M., Tamura, Y., et al. (2004). Derivation and morphological characterization of mouse spermatogonial stem cell lines. Archives of Histology and Cytology, 67(4), 297–306.PubMedCrossRefGoogle Scholar
  32. 32.
    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.PubMedCrossRefGoogle Scholar
  33. 33.
    Resnick, J. L., Bixler, L. S., Cheng, L., & Donovan, P. J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature, 359(6395), 550–551.PubMedCrossRefGoogle Scholar
  34. 34.
    Seandel, M., James, D., Shmelkov, S. V., et al. (2007). Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature, 449(7160), 346–350.PubMedCrossRefGoogle Scholar
  35. 35.
    Shi, Y. Q., Wang, Q. Z., Liao, S. Y., et al. (2006). In vitro propagation of spermatogonial stem cells from KM mice. Frontiers in Bioscience, 11, 2614–2622.PubMedCrossRefGoogle Scholar
  36. 36.
    Stadtfeld, M., Apostolou, E., Akutsu, H., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465(7295), 175–181.PubMedCrossRefGoogle Scholar
  37. 37.
    Stevens, L. C. (1967). Origin of testicular teratomas from primordial germ cells in mice. Journal of the National Cancer Institute, 38(4), 549–552.PubMedGoogle Scholar
  38. 38.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  39. 39.
    Tapia, N., Arauzo-Bravo, M. J., Ko, K., & Scholer, H. R. (2011). Concise review: challenging the pluripotency of human testis-derived ESC-like cells. Stem Cells, 29(8), 1165–1169.PubMedCrossRefGoogle Scholar
  40. 40.
    Tegelenbosch, R. A., & de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutation Research, 290(2), 193–200.PubMedCrossRefGoogle Scholar
  41. 41.
    Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kinarm Ko
    • 1
    • 2
    • 3
  • Guangming Wu
    • 1
  • Marcos J. Araúzo-Bravo
    • 1
  • Julee Kim
    • 1
  • Jury Francine
    • 4
  • Boris Greber
    • 1
  • Jörg Mühlisch
    • 5
  • Jin Young Joo
    • 1
  • Davood Sabour
    • 1
  • Michael C. Frühwald
    • 5
  • Natalia Tapia
    • 1
  • Hans R. Schöler
    • 1
    • 6
    Email author
  1. 1.Department of Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineMünsterGermany
  2. 2.Center for Stem Cell Research, Institute of Biomedical Science and TechnologyKonkuk UniversitySeoulRepublic of Korea
  3. 3.Depatment of Neuroscience, School of MedicineKonkuk UniversitySeoulRepublic of Korea
  4. 4.Centre for Integrated Genomic Medical Research, School of MedicineUniversity of ManchesterManchesterUK
  5. 5.Department of Pediatric Hematology and OncologyUniversity Children’s Hospital MünsterMünsterGermany
  6. 6.Faculty of MedicineUniversity of MünsterMünsterGermany

Personalised recommendations