Advertisement

Stem Cell Reviews and Reports

, Volume 8, Issue 2, pp 363–374 | Cite as

Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle

  • Carlos Hermano da Justa PinheiroEmail author
  • Jean César Farias de Queiroz
  • Lucas Guimarães-Ferreira
  • Kaio Fernando Vitzel
  • Renato Tadeu Nachbar
  • Luís Gustavo Oliveira de Sousa
  • Alcione Lescano de Souza-Jr
  • Maria Tereza Nunes
  • Rui Curi
Article

Abstract

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex® reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.

Keywords

Muscular dystrophy Mesenchymal stem cells Stem cell transplantation Inflammation Cytokines Angiogenesis Skeletal muscle function 

Notes

Acknowledgements

C.H.J Pinheiro was scholar fellowship of São Paulo Research Foundation—FAPESP [2008/54693-9]. The authors thank Emilia Ribeiro, J.R. de Mendonça, Dr. Tatiana C. Alba Loureiro and Adhemar Pettri Filho for constant assistance. This work was also supported by the National Council for Scientific and Technological Development (CNPq) [573557/2008-0].

References

  1. 1.
    Leturcq, F., & Kaplan, J. C. (2005). Molecular bases of dystrophinopathies. J Soc Biol, 199, 5–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Burghes, A. H., Logan, C., Hu, X., et al. (1987). A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature, 328, 434–437.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrari, G., Cusella-De Angelis, G., & Coletta, M. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.PubMedCrossRefGoogle Scholar
  4. 4.
    Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401, 390–394.PubMedGoogle Scholar
  5. 5.
    McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., et al. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA, 99, 1341–1346.PubMedCrossRefGoogle Scholar
  6. 6.
    Fukada, S., Miyagoe–Suzuki, Y., Tsukihara, H., et al. (2002). Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci, 115, 1285–1293.PubMedGoogle Scholar
  7. 7.
    LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589–601.PubMedCrossRefGoogle Scholar
  8. 8.
    Camargo, F. D., Green, R., Capetanaki, Y., et al. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med, 9, 1520–1527.PubMedCrossRefGoogle Scholar
  9. 9.
    Corbel, S. Y., Lee, A., Yi, L., et al. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Nat Med, 9, 1528–1532.PubMedCrossRefGoogle Scholar
  10. 10.
    Bachrach, E., Li, S., Perez, A. L., et al. (2004). Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA, 101, 3581–3586.PubMedCrossRefGoogle Scholar
  11. 11.
    Wakitani, S., Saito, T., & Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426.PubMedCrossRefGoogle Scholar
  12. 12.
    Gonçalves, M. A., de Vries, A. A., Holkers, M., et al. (2006). Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet, 15, 213–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7, 211–228.PubMedCrossRefGoogle Scholar
  14. 14.
    Rodriguez, A. M., Elabd, C., Amri, E. Z., et al. (2005). Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, 201, 1397–1405.PubMedCrossRefGoogle Scholar
  15. 15.
    Vieira, N. M., Bueno, C. R., Jr., Brandalise, V., et al. (2008). SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells, 26, 2391–2398.PubMedCrossRefGoogle Scholar
  16. 16.
    Bacou, F., el Andalousi, R. B., Daussin, P. A., et al. (2004). Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant, 13, 103–111.PubMedGoogle Scholar
  17. 17.
    Lee, J. H., & Kemp, D. M. (2006). Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun, 341, 882–888.PubMedCrossRefGoogle Scholar
  18. 18.
    Di Rocco, G., Iachininoto, M. G., Tritarelli, A., et al. (2006). Myogenic potential of adipose-tissue-derived cells. J Cell Sci, 119, 2945–2952.PubMedCrossRefGoogle Scholar
  19. 19.
    Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell, 100, 231–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Messina, S., Mazzeo, A., Bitto, A., et al. (2007). VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J, 21, 3737–3746.PubMedCrossRefGoogle Scholar
  21. 21.
    Gargioli, C., Coletta, M., De Grandis, F., et al. (2008). PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med, 14, 973–978.PubMedCrossRefGoogle Scholar
  22. 22.
    Rando, T. A. (2008). Turning back time: reversing tissue pathology to enhance stem cell engraftment. Cell Stem Cell, 3, 232–234.PubMedCrossRefGoogle Scholar
  23. 23.
    Pinheiro, C. H., Vitzel, K. F., & Curi, R. (2010). Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2010.01143.x
  24. 24.
    Bassit, R. A., Pinheiro, C. H., Vitzel, K. F., et al. (2010). Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol, 108, 945–955.PubMedCrossRefGoogle Scholar
  25. 25.
    Chamberlain, J. S., Metzger, J., Reyes, M., et al. (2007). Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J, 21, 2195–2204.PubMedCrossRefGoogle Scholar
  26. 26.
    Moser, H. (1984). Review of studies on the proportion and origin of new mutants in Duchenne muscular dystrophy. In L. P. Ten Kate, P. L. Pearson, & A. M. Stadhouders (Eds.), Research into the Origin and Treatment of Muscular Dystrophy (pp. 41–52). Amsterdam: Excerpta Medica.Google Scholar
  27. 27.
    Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., et al. (2001). Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol, 535, 591–600.PubMedCrossRefGoogle Scholar
  28. 28.
    Gnecchi, M., Zhang, Z., Ni, A., et al. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res, 103, 1204–1219.PubMedCrossRefGoogle Scholar
  29. 29.
    Lecarpentier, Y. (2007). Physiological role of free radicals in skeletal muscles. J Appl Physiol, 103, 1917–1918.PubMedCrossRefGoogle Scholar
  30. 30.
    Irintchev, A. (1987). Muscle damage and repair in voluntarily running mice: strain and muscle differences. Cell Tissue Res, 249, 509–521.PubMedCrossRefGoogle Scholar
  31. 31.
    Mendell, J. R. (1971). Duchenne muscular dystrophy: functional ischemia reproduces its characteristic lesions. Science, 172, 1143–1145.PubMedCrossRefGoogle Scholar
  32. 32.
    Louboutin, J. P., Rouger, K., Tinsley, J. M., et al. (2001). iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin. Mol Med, 7, 355–364.PubMedGoogle Scholar
  33. 33.
    Bredt, D., & Snyder, S. (1994). Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem, 63, 175–195.PubMedCrossRefGoogle Scholar
  34. 34.
    Kobzik, L., Reid, M., Bredt, D., et al. (1994). Nitric oxide in skeletal muscle. Nature, 372, 546–548.PubMedCrossRefGoogle Scholar
  35. 35.
    Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys, 356, 1–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Wehling, M., Spencer, M. J., & Tidball, J. G. (2001). A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol, 155, 123–131.PubMedCrossRefGoogle Scholar
  37. 37.
    Gurpur, P. B., Liu, J., Burkin, D. J., et al. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol, 174, 999–1008.PubMedCrossRefGoogle Scholar
  38. 38.
    Chung, J., Grammer, T. C., Lemon, K. P., et al. (1994). PDGF- and insulin-dependent pp 70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature, 370, 71–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.PubMedCrossRefGoogle Scholar
  40. 40.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 98, 10344–10349.PubMedCrossRefGoogle Scholar
  41. 41.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.PubMedCrossRefGoogle Scholar
  42. 42.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. J Cell Biochem, 98, 1076–1084.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang, Y. L., Zhao, Q., Qin, X., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg, 80, 229–236.PubMedCrossRefGoogle Scholar
  44. 44.
    Togel, F., Hu, Z., Weiss, K., et al. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol, 289, F31–F42.PubMedCrossRefGoogle Scholar
  45. 45.
    Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.PubMedCrossRefGoogle Scholar
  46. 46.
    Al-Khaldi, A., Al-Sabti, H., Galipeau, J., et al. (2003). Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 75, 204–209.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagaya, N., Fujii, T., Iwase, T., et al. (2004). Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 287, H2670–H2676.PubMedCrossRefGoogle Scholar
  48. 48.
    Nagaya, N., Kangawa, K., Itoh, T., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112, 1128–1135.PubMedCrossRefGoogle Scholar
  49. 49.
    Wehling-Henricks, M., Lee, J. J., & Tidball, J. G. (2004). Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul. Disord., 14, 483–490.PubMedCrossRefGoogle Scholar
  50. 50.
    Messina, S., Bitto, A., Aguennouz, M., et al. (2006). Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol, 198(1), 234–241.PubMedCrossRefGoogle Scholar
  51. 51.
    Tidball, J. G., & Wehling-Henricks, M. (2007). Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol., 578(Pt 1), 327–336.PubMedGoogle Scholar
  52. 52.
    Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., et al. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest., 119(6), 1583–1594.PubMedCrossRefGoogle Scholar
  53. 53.
    Barbul, A., Lazarou, S. A., Efron, D. T., et al. (1990). Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery, 108, 331–337.PubMedGoogle Scholar
  54. 54.
    Wehling-Henricks, M., Jordan, M. C., Gotoh, T., et al. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One., 5(5), e10763.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos Hermano da Justa Pinheiro
    • 1
    • 2
    Email author
  • Jean César Farias de Queiroz
    • 1
  • Lucas Guimarães-Ferreira
    • 1
  • Kaio Fernando Vitzel
    • 1
    • 2
  • Renato Tadeu Nachbar
    • 1
    • 2
  • Luís Gustavo Oliveira de Sousa
    • 1
  • Alcione Lescano de Souza-Jr
    • 1
  • Maria Tereza Nunes
    • 1
  • Rui Curi
    • 1
    • 2
  1. 1.Department of Physiology and Biophysics, Institute of Biomedical SciencesUniversity of São PauloButantãBrazil
  2. 2.National Network of Cellular Therapy (RNTC)ButantãBrazil

Personalised recommendations