Advertisement

Stem Cell Reviews and Reports

, Volume 8, Issue 2, pp 305–317 | Cite as

Hidden Treasures in Stem Cells of Indeterminately Growing Bilaterian Invertebrates

  • Günter Vogt
Article

Abstract

Indeterminate growth, the life-long growth without fixed limits, is typical of some evolutionarily very successful aquatic invertebrate groups such as the decapod crustaceans, bivalve molluscs and echinoderms. These animals enlarge their organs also in the adult life period and can regenerate lost appendages and organs, which is in sharp contrast to mammals and most insects. Interestingly, decapods, bivalves and echinoderms develop only rarely neoplastic and age-related diseases, although some species reach ages exceeding 100 years. Their stem cell systems must have co-evolved with these successful life histories suggesting possession of unknown and beneficial features that might open up new vistas in stem cell biology. Research of the last decade has identified several adult stem cell systems in these groups and also some mature cell types that are capable to dedifferentiate into multipotent progenitor cells. Investigation of stem and progenitor cells in indeterminately growing bilaterian invertebrates is assumed beneficial for basic stem cell biology, aquaculture, biotechnology and perhaps medicine. The biggest treasure that could be recovered in these animal taxa concerns maintenance of stem cell niches and fidelity of stem cell division for decades without undesirable side effects such as tumour formation. Uncovering of the underlying molecular and regulatory mechanisms might evoke new ideas for the development of anti-ageing and anti-cancer interventions in humans.

Keywords

Adult stem cells Stem cell niche Decapoda Bivalvia Echinodermata Indeterminate growth Regulation Regeneration Cancer Ageing 

Notes

Acknowledgements

Many thanks to Steffen Harzsch, Manfred Schmidt and Irene Söderhäll for provisioning of figures and two anonymous referees for valuable suggestions to improve the manuscript.

Conflict of interest statement

The author declares no potential conflicts of interest.

References

  1. 1.
    Lanza, R., Blau, H., Melton, D., Moore, M., Thomas, E. D., Verfaillie, C., et al. (Eds.). (2004). Handbook of stem cells. Vol. 2: Adult and fetal stem cells. Amsterdam: Academic Press.Google Scholar
  2. 2.
    Robert, J. S. (2004). Model systems in stem cell biology. BioEssays, 26, 1005–1012.PubMedGoogle Scholar
  3. 3.
    Yi, M.-S., Hong, N., Li, Z.-D., Yan, Y., Wang, D.-K., Zhao, H.-B., et al. (2010). Medaka fish stem cells and their applications. Science China Life Sciences, 53, 426–434.PubMedGoogle Scholar
  4. 4.
    Müller, B., & Grossniklaus, U. (2010). Model organisms - a historical perspective. Journal of Proteomics, 73, 2054–2063.PubMedGoogle Scholar
  5. 5.
    Bosch, T. C. G. (Ed.). (2008). Stem cells: From Hydra to man. Heidelberg: Springer.Google Scholar
  6. 6.
    Rinkevich, B., & Matranga, V. (Eds.). (2009). Stem cells in marine organisms. Heidelberg: Springer.Google Scholar
  7. 7.
    Müller, W. E. G. (2006). The stem cell concept in sponges (Porifera): metazoan traits. Seminars in Cell & Developmental Biology, 17, 481–491.Google Scholar
  8. 8.
    Funayama, N. (2010). The stem cell system in demosponges: insights into the origin of somatic stem cells. Development, Growth & Differentiation, 52, 1–14.Google Scholar
  9. 9.
    Bosch, T. C. G., Anton-Erxleben, F., Hemmrich, G., & Khalturin, K. (2010). The Hydra polyp: nothing but an active stem cell community. Development, Growth & Differentiation, 52, 15–25.Google Scholar
  10. 10.
    Watanabe, H., Hoang, V. T., Mättner, R., & Holstein, T. W. (2009). Immortality and the base of multicellular life: lessons from cnidarian stem cells. Seminars in Cell & Developmental Biology, 20, 1114–1125.Google Scholar
  11. 11.
    Handberg-Thorsager, M., Fernandez, E., & Salo, E. (2008). Stem cells and regeneration in planarians. Frontiers in Bioscience, 13, 6374–6394.PubMedGoogle Scholar
  12. 12.
    Gentile, L., Cebrià, F., & Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, 4, 12–19.Google Scholar
  13. 13.
    Pellettieri, J., Fitzgerald, P., Watanabe, S., Mancuso, J., Green, D. R., & Sánchez Alvarado, A. (2010). Cell death and tissue remodeling in planarian regeneration. Developmental Biology, 338, 76–85.PubMedGoogle Scholar
  14. 14.
    Bely, A. E., & Sikes, J. M. (2010). Acoel and platyhelminth models for stem-cell research. Journal of Biology, 9, 14.PubMedGoogle Scholar
  15. 15.
    Harrison, S. M. W., & Harrison, D. A. (2006). Contrasting mechanisms of stem cell maintenance in Drosophila. Seminars in Cell & Developmental Biology, 17, 518–533.Google Scholar
  16. 16.
    Ohlstein, B., & Spadling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 439, 470–474.PubMedGoogle Scholar
  17. 17.
    Kirilly, D., & Xie, T. (2007). The Drosophila ovary: an active stem cell community. Cell Research, 17, 15–25.PubMedGoogle Scholar
  18. 18.
    Pearson, J., López-Onieva, L., Rojas-Ríos, P., & González-Reyes, A. (2009). Recent advances in Drosophila stem cell biology. International Journal of Developmental Biology, 53, 1329–1339.PubMedGoogle Scholar
  19. 19.
    Kimble, J., & Crittenden, S. L. (2007). Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annual Review of Cell and Developmental Biology, 23, 405–433.PubMedGoogle Scholar
  20. 20.
    Cinquin, O. (2009). Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line. Journal of Pathology, 217, 186–198.PubMedGoogle Scholar
  21. 21.
    Tiozzo, S., Brown, F. D., & De Tomaso, A. W. (2008). Regeneration and stem cells in ascidians. In T. C. G. Bosch (Ed.), Stem cells: From Hydra to man (pp. 95–112). Heidelberg: Springer.Google Scholar
  22. 22.
    Rinkevich, B. (2002). The colonial urochordate Botryllus schlosseri: from stem cells and natural tissue transplantation to issues in evolutionary ecology. Bioessays, 24, 730–740.PubMedGoogle Scholar
  23. 23.
    Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, 332, 811–816.PubMedGoogle Scholar
  24. 24.
    Kipreos, E. T. (2005). C. elegans cell cycles: invariance and stem cell divisions. Nature Reviews Molecular Cell Biology, 6, 766–776.PubMedGoogle Scholar
  25. 25.
    Wills, A. A., Holdway, J. E., Major, R. J., & Poss, K. D. (2008). Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development, 135, 183–192.PubMedGoogle Scholar
  26. 26.
    Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S.,et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, in press, doi: 10.1038/nature10188.
  27. 27.
    Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327, 542–545.PubMedGoogle Scholar
  28. 28.
    Vogt, G. (2010). Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology, 11, 643–669.PubMedGoogle Scholar
  29. 29.
    Vogt, G. (1994). Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphology, 114, 83–101.Google Scholar
  30. 30.
    Söderhäll, I., Bangyeekhun, E., Mayo, S., & Söderhäll, K. (2003). Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Developmental and Comparative Immunology, 27, 661–672.PubMedGoogle Scholar
  31. 31.
    Song, C.-K., Johnstone, L. M., Schmidt, M., Derby, C. D., & Edwards, D. H. (2007). Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. Journal of Experimental Biology, 210, 1311–1324.PubMedGoogle Scholar
  32. 32.
    Candia-Carnevali, M. D., Thorndyke, M. C., & Matranga, V. (2009). Regenerating echinoderms: A promise to understand stem cells potential. In B. Rinkevich & V. Matranga (Eds.), Stem cells in marine organisms (pp. 165–186). Heidelberg: Springer.Google Scholar
  33. 33.
    Fang, Z., Feng, Q., Chi, Y., Xie, L., & Zhang, R. (2008). Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Marine Biology, 153, 745–754.Google Scholar
  34. 34.
    Sebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of Ecology, Evolution, and Systematics, 18, 371–407.Google Scholar
  35. 35.
    FAO. (2010). The state of world fisheries and aquaculture 2010. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  36. 36.
    Vogt, G. (2011). Ageing and longevity in the Decapoda (Crustacea): a review. Zoologischer Anzeiger, in press, doi: 10.1016/j.jcz.2011.05.003.
  37. 37.
    Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J., Johnson, A. L. A., et al. (2005). Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 130–148.Google Scholar
  38. 38.
    Ebert, T. A. (2008). Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Experimental Gerontology, 43, 734–738.PubMedGoogle Scholar
  39. 39.
    Strahl, J., & Abele, D. (2010). Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis. Marine Biology, 157, 1283–1292.Google Scholar
  40. 40.
    Philipp, E. E. R., & Abele, D. (2008). Masters of longevity: lessons from long-lived bivalves - a mini review. Gerontology, 56, 55–65.Google Scholar
  41. 41.
    Finch, C. E. (1990). Longevity, senescence and the genome. Chicago: University of Chicago Press.Google Scholar
  42. 42.
    Vogt, G. (2008). How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. International Journal of Cancer, 123, 2727–2734.Google Scholar
  43. 43.
    Robert, J. (2010). Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Developmental and Comparative Immunology, 34, 915–925.PubMedGoogle Scholar
  44. 44.
    Barber, B. J. (2004). Neoplastic diseases of commercially important marine bivalves. Aquatic Living Resources, 17, 449–466.Google Scholar
  45. 45.
    Zhang, G., Guo, X., Li, L., Xu, F., Wang, X., Qi, H., et al. (2011). The oyster genome project: an update. Plant & Animal Genomes XIX Conference, San Diego, CA, January 15–19, 2011. Abstract W038.Google Scholar
  46. 46.
    Sea Urchin Genome Sequencing Consortium. (2006). The genome of the sea urchin Strongylocentrotus purpuratus. Science, 314, 941–952.Google Scholar
  47. 47.
    Xiang, J., Zhang, X., Zhang, T., Zhao, C., Zhang, B., Liu, C., et al. (2011). Progress on genome sequencing of Pacific white shrimp Litopenaeus vannamei. Plant & Animal Genomes XIX Conference, San Diego, CA, January 15–19, 2011. Abstract P644.Google Scholar
  48. 48.
    Vogt, G. (2008). The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. Journal of Zoology, 276, 1–13.Google Scholar
  49. 49.
    Vogt, G. (2011). Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. Journal of Biosciences, 36, 377–382.PubMedGoogle Scholar
  50. 50.
    Biffis, C., Alwes, F., & Scholtz, G. (2009). Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). Arthropod Structure & Development, 38, 527–540.Google Scholar
  51. 51.
    Hertzler, P. L. (2002). Development of the mesendoderm in the dendrobranchiate shrimp Sicyonia ingentis. Arthropod Structure & Development, 31, 33–49.Google Scholar
  52. 52.
    Alwes, F., & Scholtz, G. (2006). Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Development, Genes and Evolution, 216, 169–184.Google Scholar
  53. 53.
    Harzsch, S. (2001). Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Evolution & Development, 3, 154–169.Google Scholar
  54. 54.
    Krol, R. M., Hawkins, W. E., & Overstreet, R. M. (1992). Reproductive components. In F. W. Harrison & A. G. Humes (Eds.), Microscopic anatomy of invertebrates. Vol. 10: Decapod Crustacea (pp. 295–343). New York: Wiley-Liss.Google Scholar
  55. 55.
    Hinsch, G. W. (1993). Ultrastructure of spermatogonia, spermatocytes, and Sertoli cells in the testis of the crayfish, Procambarus paeninsulanus. Tissue & Cell, 25, 737–742.Google Scholar
  56. 56.
    Vogt, G., Tolley, L., & Scholtz, G. (2004). Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. Journal of Morphology, 261, 286–311.PubMedGoogle Scholar
  57. 57.
    Zhang, Y., Allodi, S., Sandeman, D. C., & Beltz, B. S. (2010). Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Developmental Neurobiology, 69, 415–436.Google Scholar
  58. 58.
    Martynova, M. G. (1993). Satellite cells in the crayfish heart muscle functions as stem cells and are characterized by molt-dependent behaviour. Zoologischer Anzeiger, 230, 181–190.Google Scholar
  59. 59.
    Martynova, M. G. (2004). Proliferation and differentiation processes in the heart muscle elements in different phylogenetic groups. International Review of Cytology, 235, 215–250.PubMedGoogle Scholar
  60. 60.
    Uhrík, B., Rýdlová, K., & Zacharová, D. (1989). The roles of haemocytes during degeneration and regeneration of crayfish muscle fibres. Cell and Tissue Research, 255, 443–449.PubMedGoogle Scholar
  61. 61.
    Vogt, G. (2002). Functional anatomy. In D. M. Holdich (Ed.), Biology of freshwater crayfish (pp. 53–151). Oxford: Blackwell Science.Google Scholar
  62. 62.
    Zeng, H., Ye, H., Li, S., Wang, G., & Huang, J. (2010). Hepatopancreas cell cultures from mud crab, Scylla paramamosain. In Vitro Cellular & Developmental Biology Animal, 46, 431–437.Google Scholar
  63. 63.
    Vogt, G., & Quinitio, E. T. (1994). Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquatic Toxicology, 28, 223–241.Google Scholar
  64. 64.
    Nimeth, K. T., Mahlknecht, M., Mezzanato, A., Peter, R., Rieger, R., & Ladurner, P. (2004). Stem cell dynamics during growth, feeding, and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Developmental Dynamics, 230, 91–99.PubMedGoogle Scholar
  65. 65.
    Narbonne, P., & Roy, R. (2005). Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development, 133, 611–619.Google Scholar
  66. 66.
    Davis, L. E., & Burnett, A. L. (1964). A study of growth and cell differentiation in the hepatopancreas of the crayfish. Developmental Biology, 10, 122–153.PubMedGoogle Scholar
  67. 67.
    Söderhäll, I., Kim, Y.-A., Jiravanichpaisal, P., Lee, S.-Y., & Söderhäll, K. (2005). An ancient role for a prokineticin domain in invertebrate hematopoiesis. Journal of Immunology, 174, 6153–6160.Google Scholar
  68. 68.
    Lin, X., Novotny, M., Söderhäll, K., & Söderhäll, I. (2010). Ancient cytokines, the role of astakines as hematopoietic growth factors. Journal of Biological Chemistry, 285, 28577–28586.PubMedGoogle Scholar
  69. 69.
    Gherardi, F., Souty-Grosset, C., Vogt, G., Diéguez-Uribeondo, J., & Crandall, K. A. (2010). Infraorder Astacidea Latreille, 1802 p.p.: The freshwater crayfish. In F. R. Schram & J. C. von Vaupel Klein (Eds.), Treatise on zoology - anatomy, taxonomy, biology. The Crustacea, Vol. 9, Part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim) (pp. 269–423). Leiden: Brill.Google Scholar
  70. 70.
    Harrison, P. J. H., Cate, H. S., Swanson, E. S., & Derby, C. D. (2001). Postembryonic proliferation in the spiny lobster antennular epithelium: rate of genesis of olfactory receptor neurons is dependent on molt stage. Journal of Neurobiology, 47, 51–66.PubMedGoogle Scholar
  71. 71.
    Johnson, P. T. (1980). Histology of the blue crab, Callinectes sapidus. New York: Praeger.Google Scholar
  72. 72.
    Vafopoulou, X., Laufer, H., & Steel, C. G. H. (2007). Spatial and temporal distribution of the ecdysteroid receptor (EcR) in haemocytes and epidermal cells during wound healing in the crayfish, Procambarus clarkii. General and Comparative Endocrinology, 152, 359–370.PubMedGoogle Scholar
  73. 73.
    Hopkins, P. M., Chung, A. C.-K., & Durica, D. S. (1999). Limb regeneration in the fiddler crab, Uca pugilator: histological, physiological and molecular considerations. American Zoologist, 39, 513–526.Google Scholar
  74. 74.
    Durica, D. S., Kupfer, D., Najar, F., Lai, H., Tang, Y., Griffin, K., et al. (2006). EST library sequencing of genes expressed during early limb regeneration in the fiddler crab and transcriptional responses to ecdysteroid exposure in limb bud explants. Integrative and Comparative Biology, 46, 948–964.PubMedGoogle Scholar
  75. 75.
    Franco, A., Jouaux, A., Mathieu, M., Sourdaine, P., Lelong, C., Kellner, K., et al. (2010). Proliferating cell nuclear antigen in gonad and associated storage tissue of the Pacific oyster Crassostrea gigas: seasonal immunodetection and expression in laser microdissected tissues. Cell and Tissue Research, 340, 201–210.PubMedGoogle Scholar
  76. 76.
    Obata, M., Sano, N., Kimata, S., Nagasawa, K., Yoshizaki, G., & Komaru, A. (2010). The proliferation and migration of immature germ cells in the mussel, Mytilus galloprovincialis: observation of the expression pattern in the M. galloprovincialis vasa-like gene (Myvlg) by in situ hybridization. Development, Genes and Evolution, 220, 139–149.Google Scholar
  77. 77.
    Zaldibar, B., Cancio, I., & Marigómez, I. (2004). Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell and Tissue Research, 318, 395–402.PubMedGoogle Scholar
  78. 78.
    Casali, A., & Batlle, E. (2009). Intestinal stem cells in mammals and Drosophila. Cell Stem Cell, 4, 124–127.PubMedGoogle Scholar
  79. 79.
    Hine, P. M. (1999). The inter-relationships of bivalve haemocytes. Fish & Shellfish Immunology, 9, 367–385.Google Scholar
  80. 80.
    Cima, F., Matozzo, V., Marin, M. G., & Ballarin, L. (2000). Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunctional characterisation. Fish & Shellfish Immunology, 10, 677–693.Google Scholar
  81. 81.
    Matozzo, V., Marin, M. G., Cima, F., & Ballarin, L. (2008). First evidence of cell division in circulating haemocytes from the Manila clam Tapes philippinarum. Cell Biology International, 32, 865–868.PubMedGoogle Scholar
  82. 82.
    Acosta-Salmón, H., & Southgate, P. C. (2006). Wound healing after excision of mantle tissue from the Akoya pearl oyster, Pinctada fucata. Comparative Biochemistry and Physiology A, 143, 264–268.Google Scholar
  83. 83.
    Tomiyama, T., & Ito, K. (2006). Regeneration of lost siphon tissues in the tellinacean bivalve Nuttallia olivacea. Journal of Experimental Marine Biology and Ecology, 335, 104–113.Google Scholar
  84. 84.
    García-Arrarás, J. E., & Greenberg, M. J. (2001). Visceral regeneration in holothurians. Microscopy Research and Technique, 55, 438–451.PubMedGoogle Scholar
  85. 85.
    Mashanov, V. S., Zueva, O. R., Rojas-Catagena, C., & Garcia-Arraras, J. E. (2010). Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Developmental Biology, 10, 117.PubMedGoogle Scholar
  86. 86.
    Thorndyke, M. C., Chen, W.-C., Beesley, P. W., & Patruno, M. (2001). Molecular approach to echinoderm regeneration. Microscopy Research and Technique, 55, 474–485.PubMedGoogle Scholar
  87. 87.
    Candia Carnevali, M. D. (2006). Regeneration in echinoderms: repair, regrowth, cloning. Invertebrate Survival Journal, 3, 64–76.Google Scholar
  88. 88.
    García-Arrarás, J. E., & Dolmatov, I. Y. (2010). Echinoderms: potential model systems for studies on muscle regeneration. Current Pharmaceutical Design, 16, 942–955.PubMedGoogle Scholar
  89. 89.
    Ward, R. D., & Nishioka, D. (1993). Seasonal changes in testicular structure and localization of a sperm surface glycoprotein during spermatogenesis in sea urchins. Journal of Histochemistry and Cytochemistry, 41, 423–431.PubMedGoogle Scholar
  90. 90.
    Yakovlev, K. V., Battulin, N. R., Serov, O. L., & Odintsova, N. A. (2010). Isolation of oogonia from ovaries of the sea urchin Strongylocentrotus nudus. Cell and Tissue Research, 342, 479–490.PubMedGoogle Scholar
  91. 91.
    Holm, K., Dupont, S., Sköld, H., Stenius, A., Thorndyke, M., & Hernroth, B. (2008). Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). Journal of Experimental Biology, 211, 2551–2558.PubMedGoogle Scholar
  92. 92.
    Pinsino, A., Thorndyke, M. C., & Matranga, V. (2007). Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress & Chaperones, 12, 331–341.Google Scholar
  93. 93.
    Ortiz-Pineda, P. A., Ramírez-Gómez, F., Pérez-Ortiz, J., González-Díaz, S., Santiago-De Jesús, F., Hernández-Pasos, J., et al. (2009). Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics, 10, 262.PubMedGoogle Scholar
  94. 94.
    Biressi, A. C. M., Zou, T., Dupont, S., Dahlberg, C., Di Benedetto, C., Bonasoro, F., et al. (2010). Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology, 129, 1–19.Google Scholar
  95. 95.
    Hernroth, B., Farahani, F., Brunborg, G., Dupont, S., Dejmek, A., & Nilsson Sköld, H. (2010). Possibility of mixed progenitor cells in sea star arm regeneration. Journal of Experimental Zoology B, 314, 457–468.Google Scholar
  96. 96.
    Turksen, K. (Ed.). (2004). Adult stem cells. Totawa: Humana.Google Scholar
  97. 97.
    Odintsova, N. A. (2009). Stem cells of marine invertebrates: regulation of proliferation and induction of differentiation in vitro. Cell and Tissue Biology, 3, 403–408.Google Scholar
  98. 98.
    Rinkevich, B. (2011). Cell cultures from marine invertebrates: new insights for capturing endless stemness. Marine Biotechnology, 13, 345–354.PubMedGoogle Scholar
  99. 99.
    Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–168.PubMedGoogle Scholar
  100. 100.
    Murugesan, P., Balasubramanian, T., & Pandian, T. J. (2010). Does haemocoelom exclude embryonic stem cells and asexual reproduction in invertebrates? Current Science, 98, 768–771.Google Scholar
  101. 101.
    Bely, A. E. (2010). Evolutionary loss of animal regeneration: pattern and process. Integrative and Comparative Biology, 50, 515–527.PubMedGoogle Scholar
  102. 102.
    Katsube, K.-I., & Sakamoto, K. (2005). Notch in vertebrates - molecular aspects of the signal. International Journal of Developmental Biology, 49, 369–374.PubMedGoogle Scholar
  103. 103.
    Brand, A. H., & Livesey, F. J. (2011). Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron, 70, 719–729.PubMedGoogle Scholar
  104. 104.
    Oviedo, N. J., Pearson, B. J., Levin, M., & Sánchez Alvarado, A. (2008). Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Disease Models & Mechanisms, 1, 131–143.Google Scholar
  105. 105.
    Gustafson, E. A., & Wessel, G. M. (2010). Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays, 32, 626–637.PubMedGoogle Scholar
  106. 106.
    Sánchez Alvarado, A., & Tsonis, P. A. (2006). Bridging the regeneration gap: genetic insights from diverse animal models. Nature Reviews Genetics, 7, 873–884.PubMedGoogle Scholar
  107. 107.
    Yoshida-Noro, C., & Tochinai, S. (2010). Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Development, Growth & Differentiation, 52, 43–55.Google Scholar
  108. 108.
    Jopling, C., Boue, S., & Belmonte, J. C. I. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 12, 79–89.PubMedGoogle Scholar
  109. 109.
    Nye, H. L. D., Cameron, J. A., Chernoff, E. A. G., & Stocum, D. L. (2003). Regeneration of the urodele limb: a review. Developmental Dynamics, 226, 280–294.PubMedGoogle Scholar
  110. 110.
    Masahito, P., Ishikawa, T., & Sugano, H. (1988). Fish tumors and their importance in cancer research. Japanese Journal of Cancer Research, 79, 545–555.PubMedGoogle Scholar
  111. 111.
    Newman, S. J., & Smith, S. A. (2006). Marine mammal neoplasia: a review. Veterinary Pathology, 43, 865–880.PubMedGoogle Scholar
  112. 112.
    Pompei, F., Polkanov, M., & Wilson, R. (2001). Age distribution of cancer in mice: the incidence turnover at old age. Toxicology and Industrial Health, 17, 7–16.PubMedGoogle Scholar
  113. 113.
    Spitsbergen, J. M., & Kent, M. L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research - advantages and current limitations. Toxicologic Pathology, 31(Suppl), 62–87.PubMedGoogle Scholar
  114. 114.
    Feitsma, H., & Cuppen, E. (2008). Zebrafish as a cancer model. Molecular Cancer Research, 6, 685–694.PubMedGoogle Scholar
  115. 115.
    Anchelin, M., Murcia, L., Alcaraz-Pérez, F., García-Navarro, E. M., & Cayuela, M. L. (2011). Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS ONE, 6, e16955.PubMedGoogle Scholar
  116. 116.
    Lang, G. H., Wang, Y., Nomura, N., & Matsumura, M. (2004). Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicus. Marine Biotechnology, 6, 347–354.Google Scholar
  117. 117.
    Klapper, W., Kühne, K., Singh, K. K., Heidorn, K., Parwaresh, R., & Krupp, G. (1998). Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Letters, 439, 143–146.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations