Stem Cell Reviews and Reports

, Volume 8, Issue 1, pp 224–228 | Cite as

Defective Neuromuscular Transmission in the SOD1G93A Transgenic Mouse Improves After Administration of Human Umbilical Cord Blood Cells

  • Nizar Souayah
  • K. M. Coakley
  • R. Chen
  • Norman Ende
  • Joseph J. McArdle
Article

Abstract

To assess the effect of human umbilical cord blood (hUCB) transplantation on neuromuscular transmission in SOD1G93A transgenic mice, we studied the probability of neuromuscular transmission (PNMT), a relevant physiological indicator of motor nerve function, in 3 SOD1G93A mice transplanted with hUCB and compared to PNMT in 4 SOD1G93A mice without cell transplantation and 3 non-mutant SOD1 transgenic mice. For preparations isolated from non-mutant SOD1 transgenic mice, PNMT was 0.93 and 0.84 during the first 5 s of 70 and 90 Hz trains, respectively. PNMT gradually declined to 0.77 and 0.42 at the end of the trains. In striking contrast, PNMT for preparations from non-treated mutant SOD1G93A mice was 0.52 and 0.36 in the first 5 s of 70 and 90 Hz trains, respectively (p < 0.05). Treatment with hUCB significantly (p < 0.05) improved PNMT in SOD1G93A preparations. That is, the initial 5 s PNMT was 0.88 and 0.68 for the 70 and 90 Hz stimuli, respectively. We concluded that hUCB transplantation significantly improved PNMT for muscles removed from SOD1G93A mice. Testing PNMT in the SOD1G93A mouse model could be used as a simple in vitro protocol to detect a positive cellular response to therapeutic interventions in ALS.

Keywords

Human umbilical cord blood Amyotrophic lateral sclerosis SOD1 G93A Transplantation Neuromuscular transmission 

Notes

Acknowledgements

Supported by the Abraham S. Ende Research Foundation, The Kirby Foundation, The Toohey Neuroscience Fund at New Jersey Medical School and NINDS NS 045979.

Disclosures

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Rowland, L. P., & Shneider, N. A. (2001). Amyotrophic lateral sclerosis. The New England Journal of Medicine, 344, 1688–1700.PubMedCrossRefGoogle Scholar
  2. 2.
    Cleveland, D. W., & Rothstein, J. D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Reviews, 2, 806–819.PubMedCrossRefGoogle Scholar
  3. 3.
    Gurney, M. E. (1994). Transgenic-mouse model of amyotrophic lateral sclerosis. The New England Journal of Medicine, 331, 1721–1722.PubMedCrossRefGoogle Scholar
  4. 4.
    Gurney, M. E., Pu, H., Chiu, A. Y., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosen, D. R., Sapp, P., O’Regan, J., et al. (1994). Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. American Journal of Medical Genetics, 51, 61–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosen, D. R., Siddique, T., Patterson, D., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim, H. J., Lee, J. H., & Kim, S. H. (2009). Therapeutic effects of human mesenchymal stem cells for traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. Journal of Neurotrauma, 27, 131–8.Google Scholar
  8. 8.
    Snyder, E. Y. (2006). Special issue: the intersection of stem/progenitor cell biology and hypoxic-ischemic cerebral injury/stroke. Experimental Neurology, 199, 1–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitsui, T., Shumsky, J. S., Lepore, A. C., Murray, M., & Fischer, I. (2005). Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. Journal of Neuroscience, 25, 9624–9636.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu, W., Chen, X., Hu, C., Li, J., Yu, Z., & Cai, W. (2010). Transplantation of neural stem cells expressing hypoxia-inducible factor-1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model. Journal of Clinical Neuroscience, 17, 92–5.Google Scholar
  11. 11.
    Bicknese, A. R., Goodwin, H. S., Quinn, C. O., Henderson, V. C., Chien, S. N., & Wall, D. A. (2002). Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplantation, 11, 261–264.PubMedGoogle Scholar
  12. 12.
    Chen, N., Hudson, J. E., Walczak, P., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23, 1560–1570.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, R., & Ende, N. (2000). The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. Journal of Medicine, 31, 21–30.PubMedGoogle Scholar
  14. 14.
    Ende, N., Weinstein, F., Chen, R., & Ende, M. (2000). Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sciences, 67, 53–59.PubMedCrossRefGoogle Scholar
  15. 15.
    Nicaise, C., Mitrecic, D., Demetter, P., et al. (2009). Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat. Brain Research, 1301, 152–162.PubMedCrossRefGoogle Scholar
  16. 16.
    Rizvanov, A. A., Kiyasov, A. P., Gaziziov, I. M., et al. (2008). Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy. Neurochemistry International, 53, 389–394.PubMedCrossRefGoogle Scholar
  17. 17.
    Garbuzova-Davis, S., Sanberg, C. D., Kuzmin-Nichols, N., et al. (2008). Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PloS One, 3, e2494.PubMedCrossRefGoogle Scholar
  18. 18.
    Garbuzova-Davis, S., Saporta, S., Haller, E., et al. (2007). Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PloS One, 2, e1205.PubMedCrossRefGoogle Scholar
  19. 19.
    Garbuzova-Davis, S., Willing, A. E., Zigova, T., et al. (2003). Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. Journal of Hematotherapy & Stem Cell Research, 12, 255–270.CrossRefGoogle Scholar
  20. 20.
    Habisch, H. J., Janowski, M., Binder, D., et al. (2007). Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. Journal of Neural Transmission, 114, 1395–1406.PubMedCrossRefGoogle Scholar
  21. 21.
    McArdle, J. J. (1975). Complex endplate potentials at the regenerating neuromuscular junction of the rat. Experimental Neurology, 49, 629–638.CrossRefGoogle Scholar
  22. 22.
    Ferrucci, M., Spalloni, A., Bartalucci, A., et al. (2010). A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Neurobiology of Disease, 37, 370–383.PubMedCrossRefGoogle Scholar
  23. 23.
    Suchy, J., Lee, S., Ahmed, A., & Shea, T. B. (2010). Dietary supplementation with S-adenosyl methionine delays the onset of motor neuron pathology in a murine model of amyotrophic lateral sclerosis. Neuromolecular Medicine, 12, 86–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Martinez, J. A., Francis, G. J., Liu, W. Q., et al. (2008). Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience, 157, 908–925.PubMedCrossRefGoogle Scholar
  25. 25.
    Wong, M., & Martin, L. J. (2010). Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Human Molecular Genetics, 19, 2284–2302.PubMedCrossRefGoogle Scholar
  26. 26.
    Fischer, L. R., Culver, D. G., Tennant, P., et al. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Experimental Neurology, 185, 232–240.PubMedCrossRefGoogle Scholar
  27. 27.
    Shefner, J. M., Reaume, A. G., Flood, D. G., et al. (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53, 1239–1246.PubMedGoogle Scholar
  28. 28.
    Zhou, C., Zhao, C. P., Zhang, C., Wu, G. Y., & Xiong, F. (2007). A method comparison in monitoring disease progression of G93A mouse model of ALS. Amyotrophic Lateral Sclerosis, 8, 366–372.PubMedCrossRefGoogle Scholar
  29. 29.
    Shefner, J. M., Cudkowicz, M., & Brown, R. H., Jr. (2006). Motor unit number estimation predicts disease onset and survival in a transgenic mouse model of amyotrophic lateral sclerosis. Muscle & Nerve, 34, 603–607.CrossRefGoogle Scholar
  30. 30.
    Shefner, J. M., Brown, R. H., Jr., Cole, D., et al. (2001). Effect of neurophilin ligands on motor units in mice with SOD1 ALS mutations. Neurology, 57, 1857–1861.PubMedGoogle Scholar
  31. 31.
    Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35, 2385–2389.PubMedCrossRefGoogle Scholar
  32. 32.
    Xiao, J., Nan, Z., Motooka, Y., & Low, W. C. (2005). Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells and Development, 14, 722–733.PubMedCrossRefGoogle Scholar
  33. 33.
    Bachstetter, A. D., Pabon, M. M., Cole, M. J., et al. (2008). Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neuroscience, 9, 22.PubMedCrossRefGoogle Scholar
  34. 34.
    Rameshwar, P., Smith, I., Ende, N., Batarseh, H. E., & Ponzio, N. M. (1999). Endogenous hematopoietic reconstitution induced by human umbilical cord blood cells in immunocompromised mice: implications for adoptive therapy. Experimental Hematology, 27, 176–185.PubMedCrossRefGoogle Scholar
  35. 35.
    Gyorffy, C., & Nicolucci, J. (2009). What are the common causes of facial neuropathy? Journal of the Canadian Dental Association, 75, 103–104.PubMedGoogle Scholar
  36. 36.
    Garbuzova-Davis, S., Saporta, S., & Sanberg, P. R. (2008). Implications of blood–brain barrier disruption in ALS. Amyotrophic Lateral Sclerosis, 9, 375–376.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nizar Souayah
    • 1
    • 4
  • K. M. Coakley
    • 2
  • R. Chen
    • 3
  • Norman Ende
    • 3
  • Joseph J. McArdle
    • 2
  1. 1.Department of Neurology and NeurosciencesNew Jersey Medical School-UMDNJNewarkUSA
  2. 2.Department of Pharmacology & PhysiologyNew Jersey Medical School-UMDNJNewarkUSA
  3. 3.Department of Pathology & Laboratory MedicineNew Jersey Medical School-UMDNJNewarkUSA
  4. 4.NewarkUSA

Personalised recommendations