Stem Cell Reviews and Reports

, Volume 7, Issue 4, pp 860–868 | Cite as

Human Serum is as Efficient as Fetal Bovine Serum in Supporting Proliferation and Differentiation of Human Multipotent Stromal (Mesenchymal) Stem Cells In Vitro and In Vivo

  • Abdullah Aldahmash
  • Mandana Haack-Sørensen
  • May Al-Nbaheen
  • Linda Harkness
  • Basem M. Abdallah
  • Moustapha KassemEmail author



Human multipotent stromal (skeletal, mesenchymal) stem cells (hMSC) are employed in an increasing number of clinical trials for tissue regeneration of age-related degenerative diseases. However, routine use of fetal bovine sera (FBS) for their in vitro expansion is not optimal and may pose a health risk for patients.


We carried out a side-by-side comparison of the effects of allogenic pooled human serum (HuS) versus FBS on hMSC proliferation and differentiation in vitro and in vivo. As a model for hMSC, we employed telomerase-immortalized hMSC; hMSC-TERT cell line.


hMSC-TERT exhibited similar morphology and size when cultured in HuS vs. FBS as assessed by light microscopy and FACS analysis. We did not observe any significant differences in growth rates of hMSC-TERT during short-term (10 days) and long-term (100 days) culture in media supplemented with HuS vs. FBS. hMSC-TERT or primary bone marrow derived hMSC induced to osteoblastic or adipocytic differentiation in the presence of HuS or FBS showed comparable levels of gene expression and protein production of osteoblastic markers (CBFA1/Runx2, alkaline phosphastase, collagen type I and osteocalcin) or adipocytic markers (PPAR-gamma2, lipoprotein lipase (LPL), aP2), respectively. In order to test for the functional capacity of hMSC-TERT that have been maintained in long-term cultures in the presence of HuS vs. FBS, the cells were mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and implanted subcutaneously in immune deficient mice. hMSC maintained in HuS vs. FBS formed comparable heterotopic bone.


Human serum can support proliferation and differentiation of hMSC in vitro and can maintain their bone forming capacity in vivo. The use of human serum in cell cultures of hMSC intended for cell-based therapy is preferable.


Human mesenchymal stem cells Stromal stem cells Fetal bovine serum Human serum Osteoblast differentiation Adipocyte differentiation 



The study was supported by grants from the Novo Nordisk Foundation, the Lundbeck foundation and grants from the Region of Southern Denmark and King Abdulaziz City for Science and Technology (09-BIO740-20).

Disclosure of Interest

The authors disclose no conflict of interest

Supplementary material

12015_2011_9274_Fig5_ESM.jpg (81 kb)
Supplementary Fig. 1

(a) Phase-contrast pictures of hMSC-TERT cultured in medium containing fetal bovine serum (FBS, 10%) or human serum (HuS, 5%).Magnification: 200×. (b) FACS analysis of size versus granularity of hMSC-TERT cells cultured in FBS (10%) or HuS (5%) (JPEG 80 kb)

12015_2011_9274_MOESM1_ESM.tif (2.7 mb)
High resolution image (TIFF 2721 kb)
12015_2011_9274_Fig6_ESM.jpg (2.1 mb)
Supplementary Fig. 2

Cytochemical and immunocytochemical staining of hMSC-TERT cultured in osteoblast induction medium (induced) and control medium (control) in presence of fetal bovine serum FBS (10%) and human serum (HuS, 5%), magnification 100×. Alkaine phosphatase (AP), collagen type I, bone sialoprotein (BSP), osteopontin (OP), osteocalcin and alizarin R for mineralized matrix (AR-S). Magnification 200× (JPEG 2155 kb)

12015_2011_9274_MOESM2_ESM.tif (8.3 mb)
High resolution image (TIFF 8460 kb)
12015_2011_9274_Fig7_ESM.jpg (1.9 mb)
Supplementary Fig. 3

Formation of adipocytes by hMSC-TERT cells cultured in adipocyte induction medium (induced) and control medium (control) in presence of human serum (HuS, 5%) and fetal bovine serum (FBS, 10%) and visualized by Oil red O staining. Magnification: 200× (JPEG 1938 kb)

12015_2011_9274_MOESM3_ESM.tif (3.5 mb)
High resolution image (TIFF 3617 kb)
12015_2011_9274_Fig8_ESM.jpg (104 kb)
Supplementary Fig. 4

Effect of HuS versus FBS on osteoblast and adipocyte differentiation of primary hMSC. Primary hMSC were isolated and cultured as described in M&M. Cells were induced to either osteoblast or adipocyte differentiation in the presence of 10% HuS or 10% FBS for 12 days. (a) Quantitative ALP activity after normalization to cell viability as described in M&M. (b) ALP staining after 12 days in osteoblast induced medium. (c) % adipocyte quantification. (d) Oil red O staining of fat droplets after 12 days in adipogenic induction medium. Cells cultured in 10% HuS or FBS without induction media were used as controls in each experiment. Values are represented as means ± SD of three independent experiments (JPEG 104 kb)

12015_2011_9274_MOESM4_ESM.tif (2.8 mb)
High resolution image (TIFF 2899 kb)


  1. 1.
    Kassem, M., & Abdallah, B. (2008). Human bone-marrow-derived mesenchymal stem cells: Biological characteristics and potential role in therapy of degenerative diseases. Cell and Tissue Research, 331, 157–163.PubMedCrossRefGoogle Scholar
  2. 2.
    Le Blanc, K., & Ringden, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262, 509–525.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Natural Medicines, 11, 228–232.CrossRefGoogle Scholar
  4. 4.
    Sundin, M., Ringden, O., Sundberg, B., Nava, S., Gotherstrom, C., & Le Blanc, K. (2007). No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica, 92, 1208–1215.PubMedCrossRefGoogle Scholar
  5. 5.
    Berger, M. G., Veyrat-Masson, R., Rapatel, C., Sp, D., Chassagne, J., & Boiret-Dupre, N. (2006). Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells, 24, 2888–2890.PubMedCrossRefGoogle Scholar
  6. 6.
    Bieback, K., Hecker, A., Kocaomer, A., Lannert, H., Schallmoser, K., Strunk, D., et al. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27, 2331–2341.PubMedCrossRefGoogle Scholar
  7. 7.
    Chase, L. G., Lakshmipathy, U., Solchaga, L. A., Rao, M. S., & Vemuri, M. C. (2010). A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cells Research Therapy, 1, 1–8.CrossRefGoogle Scholar
  8. 8.
    Lin, H. T., Tarng, Y. W., Chen, Y. C., Kao, C. L., Hsu, C. J., Shyr, Y. M., et al. (2005). Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its multiple-lineage potential. Transplantation Proceedings, 37, 4504–4505.PubMedCrossRefGoogle Scholar
  9. 9.
    Muller, I., Kordowich, S., Holzwarth, C., Spano, C., Isensee, G., Staiber, A., et al. (2006). Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy, 8, 437–444.PubMedCrossRefGoogle Scholar
  10. 10.
    Schallmoser, K., Bartmann, C., Rohde, E., Reinisch, A., Kashofer, K., Stadelmeyer, E., et al. (2007). Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47, 1436–1446.PubMedCrossRefGoogle Scholar
  11. 11.
    Stute, N., Holtz, K., Bubenheim, M., Lange, C., Blake, F., & Zander, A. R. (2004). Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental Hematology, 32, 1212–1225.PubMedCrossRefGoogle Scholar
  12. 12.
    Goedecke, A., Wobus, M., Krech, M., Munch, N., Richter, K., Holig, K., Bornhauser, M. (2010). Differential effect of platelet-rich plasma and fetal calf serum on bone marrow-derived human mesenchymal stromal cells expanded in vitro. Journal of Tissue Engineering and Regenerative Medicine: [Epub ahead of print]Google Scholar
  13. 13.
    Perez-Ilzarbe, M., Diez-Campelo, M., Aranda, P., Tabera, S., Lopez, T., Del Canizo, C., et al. (2009). Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion, 49, 1901–1910.PubMedCrossRefGoogle Scholar
  14. 14.
    Jung, J., Moon, N., Ahn, J. Y., Oh, E. J., Kim, M., Cho, C. S., et al. (2008). Mesenchymal stromal cells expanded in human allogenic cord blood serum display higher self-renewal and enhanced osteogenic potential. Stem Cells and Development, 18, 559–572.CrossRefGoogle Scholar
  15. 15.
    Kuznetsov, S. A., Mankani, M. H., & Robey, P. G. (2000). Effect of serum on human bone marrow stromal cells: Ex vivo expansion and in vivo bone formation. Transplantation, 70, 1780–1787.PubMedCrossRefGoogle Scholar
  16. 16.
    Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdallah, B. M., Haack-Sorensen, M., Burns, J. S., Elsnab, B., Jakob, F., Hokland, P., et al. (2005). Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation. Biochemical and Biophysical Research Communications, 326, 527–538.PubMedCrossRefGoogle Scholar
  18. 18.
    Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I. S., et al. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature Biotechnology, 20, 592–596.PubMedCrossRefGoogle Scholar
  19. 19.
    Larsen, K. H., Frederiksen, C. M., Burns, J. S., Abdallah, B. M., & Kassem, M. (2010). Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacity. JBMR, 25, 796–808.Google Scholar
  20. 20.
    Taipaleenmaki, H., Abdallah, B. M., AlDahmash, A., Saamanen, A. M., & Kassem, M. (2011). Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Experimental Cell Research, 317, 745–756.PubMedCrossRefGoogle Scholar
  21. 21.
    Abdallah, B. M., Jensen, C. H., Gutierrez, G., Leslie, R. G., Jensen, T. G., & Kassem, M. (2004). Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. Journal of Bone and Mineral Research, 19, 841–852.PubMedCrossRefGoogle Scholar
  22. 22.
    Shahdadfar, A., Frønsdal, K., Haug, T., Reinholt, F. P., & Brinchmann, J. E. (2005). In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and Transcriptome stability. Stem Cells, 23, 1357–1366.PubMedCrossRefGoogle Scholar
  23. 23.
    Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11, 874–885.PubMedCrossRefGoogle Scholar
  24. 24.
    Kocaoemer, A., Kern, S., Kluter, H., & Bieback, K. (2007). Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells, 25, 1270–1278.PubMedCrossRefGoogle Scholar
  25. 25.
    Yilmaz, M., Ovali, E., Akdogan, E., Durmus, A., Sonmez, M., & Dikmen, T. (2008). Autologous serum is more effective than FBS on proliferation of BMSC. Saudi Medical Journal, 29, 306–309.PubMedGoogle Scholar
  26. 26.
    Nimura, A., Muneta, T., Koga, H., Mochizuki, T., Suzuki, K., Makino, H., et al. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis and Rheumatism, 58, 501–510.PubMedCrossRefGoogle Scholar
  27. 27.
    Abdallah, B. M., Ditzel, N., Kassem, M. (2008). Assessment of bone formation capacity using in vivo transplantation assays: Procedure and tissue analysis. In: J. J. Westendorf (Ed.), Osteoporosis, vol. 455. pp. 98–100. SpringerGoogle Scholar
  28. 28.
    Tolar, J., Le Blanc, K., Keating, A., & Blazar, B. R. (2010). Concise review: Hitting the right spot with mesenchymal stromal cells. Stem Cells, 28, 1446–1455.PubMedCrossRefGoogle Scholar
  29. 29.
    Dahl, J. A., Duggal, S., Coulston, N., Millar, D., Melki, J., Shahdadfar, A., et al. (2008). Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. The International Journal of Developmental Biology, 53, 1033–1042.CrossRefGoogle Scholar
  30. 30.
    Abdallah, B. M., Haack-Sorensen, M., Fink, T., & Kassem, M. (2006). Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone, 39, 181–188.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Abdullah Aldahmash
    • 1
    • 2
  • Mandana Haack-Sørensen
    • 1
  • May Al-Nbaheen
    • 2
  • Linda Harkness
    • 1
  • Basem M. Abdallah
    • 1
  • Moustapha Kassem
    • 1
    • 2
    • 3
    Email author
  1. 1.Endocrine Research Laboratory (KMEB), Department of Endocrinology and MetabolismOdense University Hospital & University of Southern DenmarkOdenseDenmark
  2. 2.Stem Cell Unit, Department of Anatomy, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
  3. 3.University Department of Endocrinology and Metabolism, University Hospital of OdenseOdense CDenmark

Personalised recommendations