Advertisement

Stem Cell Reviews and Reports

, Volume 8, Issue 1, pp 229–242 | Cite as

Functional Characterization and Gene Expression Profiling of α-Smooth Muscle Actin Expressing Cardiomyocytes Derived from Murine Induced Pluripotent Stem Cells

  • Shiva Prasad Potta
  • Xiaowu Sheng
  • John Antonydas Gaspar
  • Kesavan Meganathan
  • Smita Jagtap
  • Kurt Pfannkuche
  • Johannes Winkler
  • Jürgen Hescheler
  • Symeon Papadopoulos
  • Agapios SachinidisEmail author
Article

Introduction

Pluripotent embryonic stem cells (ESCs) are capable of self-renewal and differentiation into specialized somatic cell types in vitro (for review see [1, 2, 3, 4]). ESCs can serve as a versatile in vitro model, including in vitro developmental biology, drug discovery and cell replacement therapies of degenerative diseases [1, 2, 3, 4]. However, sophisticated differentiation protocols and understanding of molecular and cellular mechanisms involved in differentiation processes is required to understand the physiological and functional identity of the differentiated somatic cells. This is a prerequisite for establishing robust in vitro ESC-based models for research and for regenerative medicine. In this context, we recently generated and characterized on the functional and transcriptional level several transgenic murine mesodermal ESC lineages including the α-smooth muscle (Acta2) lineage [5, 6, 7, 8, 9, 10].

During embryonic development the heart is the first organ to be...

Keywords

Caffeine Leukemia Inhibitory Factor KEGG Pathway Embryoid Body Adult Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Sources of Funding

This work was supported by the grant, High Yield and Performance Stem Cell Lab (Hyperlab) from the European Community, FP7 Framework Programme, Thematic Priority, Life sciences, genomics and biotechnology for health (contract 223011).

Disclosures

None

Supplementary material

12015_2011_9271_MOESM1_ESM.avi (150.8 mb)
Supplementary video 1 (AVI 154375 kb)
Supplementary video 2

(AVI 6666 kb)

12015_2011_9271_MOESM3_ESM.ppt (210 kb)
Supplementary Figure 1 (PPT 210 kb)
12015_2011_9271_MOESM4_ESM.doc (36 kb)
Supplementary Table 1 (DOC 36 kb)
12015_2011_9271_MOESM5_ESM.xls (122 kb)
Supplementary Table 2 (XLS 122 kb)
12015_2011_9271_MOESM6_ESM.xls (164 kb)
Supplementary Table 3 (XLS 164 kb)
12015_2011_9271_MOESM7_ESM.xls (46 kb)
Supplementary Table 4 (XLS 45 kb)
12015_2011_9271_MOESM8_ESM.xls (81 kb)
Supplementary Table 5 (XLS 81 kb)
12015_2011_9271_MOESM9_ESM.xls (406 kb)
Supplementary Table 6 (XLS 405 kb)
12015_2011_9271_MOESM10_ESM.xls (96 kb)
Supplementary Table 7 (XLS 96 kb)
12015_2011_9271_MOESM11_ESM.xls (112 kb)
Supplementary Table 8 (XLS 111 kb)
12015_2011_9271_MOESM12_ESM.xls (44 kb)
Supplementary Table 9 (XLS 44 kb)

References

  1. 1.
    Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews, 85(2), 635–678.PubMedCrossRefGoogle Scholar
  2. 2.
    Winkler, J., Hescheler, J., & Sachinidis, A. (2005). Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochimica et Biophysica Acta, 1740(2), 240–248.PubMedGoogle Scholar
  3. 3.
    Doss, M. X., Koehler, C. I., Gissel, C., Hescheler, J., & Sachinidis, A. (2004). Embryonic stem cells: a promising tool for cell replacement therapy. Journal of Cellular and Molecular Medicine, 8(4), 465–473.PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler, J., Sotiriadou, I., Chen, S., Hescheler, J., & Sachinidis, A. (2009). The potential of embryonic stem cells combined with -omics technologies as model systems for toxicology. Current Medicinal Chemistry, 16(36), 4814–4827.PubMedCrossRefGoogle Scholar
  5. 5.
    Doss, M. X., Chen, S., Winkler, J., Hippler-Altenburg, R., Odenthal, M., Wickenhauser, C., et al. (2007). Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biology, 8(9), R184.PubMedCrossRefGoogle Scholar
  6. 6.
    Doss, M., Winkler, J., Chen, S., Hippler-Altenburg, R., Sotiriadou, I., Halbach, M., et al. (2007). Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes. Genome Biology, 8(4), R56.PubMedCrossRefGoogle Scholar
  7. 7.
    Mariappan, D., Niemann, R., Gajewski, M., Winkler, J., Chen, S., Choorapoikayil, S., et al. (2009). Somitovasculin, a novel endothelial-specific transcript involved in the vasculature development. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(11), 1823–1829.PubMedCrossRefGoogle Scholar
  8. 8.
    Mariappan, D., Winkler, J., Chen, S., Schulz, H., Hescheler, J., & Sachinidis, A. (2009). Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells. Genes to Cells, 14(2), 243–260.PubMedCrossRefGoogle Scholar
  9. 9.
    Potta, S. P., Liang, H., Pfannkuche, K., Winkler, J., Chen, S., Doss, M. X., et al. (2009). Functional characterization and transcriptome analysis of embryonic stem cell-derived contractile smooth muscle cells. Hypertension, 53(2), 196–204.PubMedCrossRefGoogle Scholar
  10. 10.
    Doss, M. X., Wagh, V., Schulz, H., Kull, M., Kolde, R., Pfannkuche, K. et al. (2010). Global transcriptomic analysis of murine embryonic stem cell-derived brachyury (T) cells. Genes to Cells, 15(3), 209–228.Google Scholar
  11. 11.
    Ruzicka, D. L., & Schwartz, R. J. (1988). Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. The Journal of Cell Biology, 107(6 Pt 2), 2575–2586.PubMedCrossRefGoogle Scholar
  12. 12.
    Ya, J., Markman, M. W., Wagenaar, G. T., Blommaart, P. J., Moorman, A. F., & Lamers, W. H. (1997). Expression of the smooth-muscle proteins alpha-smooth-muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart. The Anatomical Record, 249(4), 495–505.PubMedCrossRefGoogle Scholar
  13. 13.
    Woodcock-Mitchell, J., Mitchell, J. J., Low, R. B., Kieny, M., Sengel, P., Rubbia, L., et al. (1988). Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation, 39(3), 161–166.PubMedCrossRefGoogle Scholar
  14. 14.
    Potta, S. P., Liang, H., Winkler, J., Doss, M. X., Chen, S., Wagh, V., et al. (2010). Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiology and Biochemistry, 25(6), 595–604.CrossRefGoogle Scholar
  15. 15.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  16. 16.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., ntosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  17. 17.
    Gunaseeli, I., Doss, M. X., Antzelevitch, C., Hescheler, J., & Sachinidis, A. (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Current Medicinal Chemistry, 17(8), 759–766.PubMedCrossRefGoogle Scholar
  18. 18.
    Pfannkuche, K., Hannes, T., Khalil, M., Noghabi, M. S., Morshedi, A., Hescheler, J., et al. (2010). Induced pluripotent stem cells: a new approach for physiological research. Cellular Physiology and Biochemistry, 26(2), 105–124.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfannkuche, K., Liang, H., Hannes, T., Xi, J., Fatima, A., Nguemo, F., et al. (2009). Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cellular Physiology and Biochemistry, 24(1–2), 73–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.PubMedCrossRefGoogle Scholar
  21. 21.
    Horn, R., & Marty, A. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. The Journal of General Physiology, 92(2), 145–159.PubMedCrossRefGoogle Scholar
  22. 22.
    Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185–193.PubMedCrossRefGoogle Scholar
  23. 23.
    Irizarry, R. A., Gautier, L., & Cope, L. M. (2003). An R package for analyses of Affymetrix oligonucleotide arrays. In G. Parmigiani, E. S. Garrett, R. A. Irizarry, & S. L. Zeger (Eds.), The analysis of gene expression data (pp. 102–119). New York: Springer.CrossRefGoogle Scholar
  24. 24.
    Pepper, S. D., Saunders, E. K., Edwards, L. E., Wilson, C. L., & Miller, C. J. (2007). The utility of MAS5 expression summary and detection call algorithms. Bmc Bioinformatics 8, 273.Google Scholar
  25. 25.
    Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3.Google Scholar
  26. 26.
    Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811–818.PubMedCrossRefGoogle Scholar
  27. 27.
    Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.PubMedCrossRefGoogle Scholar
  28. 28.
    Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic.Google Scholar
  29. 29.
    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRefGoogle Scholar
  30. 30.
    Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. et al. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4(5), P3.Google Scholar
  31. 31.
    Liu, J., Fu, J. D., Siu, C. W., & Li, R. A. (2007). Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells, 25(12), 3038–3044.PubMedCrossRefGoogle Scholar
  32. 32.
    Germanguz, I., Sedan, O., Zeevi-Levin, N., Shtreichman, R., Barak, E., Ziskind, A. et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 15(1), 38–51.Google Scholar
  33. 33.
    Chase, A., Orchard, C. H. (2011). Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 50(1), 187–193.Google Scholar
  34. 34.
    Wu, M. Y., & Hill, C. S. (2009). TGF-[beta] superfamily signaling in embryonic development and homeostasis. Developmental Cell, 16(3), 329–343.PubMedCrossRefGoogle Scholar
  35. 35.
    Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American Journal of Physiology. Heart and Circulatory Physiology, 293(3), H1883–H1891.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shiva Prasad Potta
    • 1
  • Xiaowu Sheng
    • 1
  • John Antonydas Gaspar
    • 1
  • Kesavan Meganathan
    • 1
  • Smita Jagtap
    • 1
  • Kurt Pfannkuche
    • 1
  • Johannes Winkler
    • 1
  • Jürgen Hescheler
    • 1
  • Symeon Papadopoulos
    • 2
  • Agapios Sachinidis
    • 1
    Email author
  1. 1.Center of Physiology and PathophysiologyInstitute of Neurophysiology, University of CologneCologneGermany
  2. 2.Center of Physiology and PathophysiologyInstitute of Vegetative Physiology, University of CologneCologneGermany

Personalised recommendations