Advertisement

Stem Cell Reviews and Reports

, Volume 7, Issue 4, pp 847–859 | Cite as

Regeneration of Three Layers Vascular Wall by using BMP2-Treated MSC Involving HIF-1α and Id1 Expressions Through JAK/STAT Pathways

  • Karim BelmokhtarEmail author
  • Thierry Bourguignon
  • Morel E. Worou
  • Georges Khamis
  • Pierre Bonnet
  • Jorge Domenech
  • Véronique Eder
Article

Summary

Engineering living, multilayered blood vessels to form in vivo arteries is a promising alternative to peripheral artery bypass using acellular grafts restricted by thrombosis and occlusion at long term. Bone Morphogenetic Protein 2 (BMP2) is a growth factor determining in the early vascular embryonic development. The aim of the present study was evaluate the collaborative effect of recombinant human—BMP2 and Bone marrow—Mesenchymal stem cells (BM-MSCs) seeded on vascular patch to regenerate a vascular arterial wall in a rat model. BM-MSCs expressing green fluorescent protein (GFP) seeded on vascular patch were cultured in presence of recombinant human-BMP2 [100 ng/mL] during 1 week before their implantation on the abdominal aorta of Wistar rats. We observed after 2 weeks under physiological arterial flow a regeneration of a three layers adult-like arterial wall with a middle layer expressing smooth muscle proteins and a border layer expressing endothelial marker. In vitro study, using Matrigel assay and co-culture of BM-MSCs with endothelial cells demonstrated that rh-BMP2 promoted tube-like formation even at long term (90 days) allowing the organization of thick rails. We demonstrated using inhibitors and siRNAs that rh-BMP2 enhanced the expression of HIF-1α and Id1 through, at least in part, the stimulation of JAK2/STAT3/STAT5 signaling pathways. Rh-BMP2 by mimicking embryological conditions allowed vascular BM-MSCs differentiation.

Keywords

Regeneration Vascular grafts Bone marrow-mesenchymal stem cell Hypoxia inducible factor 1α SERCA2a rh-BMP2 

Notes

Conflict of Interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Zdrahala, R. J. (1996). Small caliber vascular grafts. Part I: state of the art. Journal of Biomaterials Applications, 10(4), 309–29.PubMedGoogle Scholar
  2. 2.
    Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhatia, R., & Hare, J. M. (2005). Mesenchymal stem cells: future source for reparative medicine. Congestive Heart Failure, 11(2), 87–91. quiz 2-3.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang, N. F., & Li, S. (2008). Mesenchymal stem cells for vascular regeneration. Regenerative Medicine, 3(6), 877–92.PubMedCrossRefGoogle Scholar
  5. 5.
    L’Heureux, N., Dusserre, N., Konig, G., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Natural Medicines, 12(3), 361–5.CrossRefGoogle Scholar
  6. 6.
    Hashi, C. K., Zhu, Y., Yang, G. Y., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 11915–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Kanki-Horimoto, S., Horimoto, H., Mieno, S., et al. (2006). Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation, 114(1 Suppl), I181–5.PubMedGoogle Scholar
  8. 8.
    Zhang, L., Zhou, J., Lu, Q., Wei, Y., & Hu, S. (2008). A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnology and Bioengineering, 99(4), 1007–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt, A., Ladage, D., Schinkothe, T., et al. (2006). Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 24(7), 1750–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Lin, H., Shabbir, A., Molnar, M., et al. (2008). Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 216(2), 458–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Schlange, T., Andree, B., Arnold, H. H., & Brand, T. (2000). BMP2 is required for early heart development during a distinct time period. Mechanisms of Development, 91(1–2), 259–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, D., Zhao, M., & Mundy, G. R. (2004). Bone morphogenetic proteins. Growth Factors, 22(4), 233–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta, S., Zhu, H., Zon, L. I., & Evans, T. (2006). BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development, 133(11), 2177–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Semenza, G. L. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied Physiology, 88(4), 1474–80.PubMedGoogle Scholar
  15. 15.
    Lee, T. K., Poon, R. T., Yuen, A. P., et al. (2006). Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clinical Cancer Research, 12(23), 6910–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Bonnet, P., Awede, B., Rochefort, G. Y., et al. (2008). Electrophysiological maturation of rat mesenchymal stem cells after induction of vascular smooth muscle cell differentiation in vitro. Stem Cells and Development, 17(6), 1131–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Mirza, A., Hyvelin, J. M., Rochefort, G. Y., et al. (2008). Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. Journal of Vascular Surgery, 47(6), 1313–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Schweitzer, K. M., Vicart, P., Delouis, C., et al. (1997). Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Laboratory Investigation, 76(1), 25–36.PubMedGoogle Scholar
  19. 19.
    Macera, M. J., Szabo, P., Wadgaonkar, R., Siddiqui, M. A., & Verma, R. S. (1992). Localization of the gene coding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23-q24.3. Genomics, 13(3), 829–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Jung, J. E., Kim, H. S., Lee, C. S., et al. (2008). STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Experimental & Molecular Medicine, 40(5), 479–85.CrossRefGoogle Scholar
  21. 21.
    Wood, A. D., Chen, E., Donaldson, I. J., et al. (2009). ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood, 114(9), 1820–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2009). Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering. Part A, 15(7), 1751–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Diefenderfer, D. L., & Brighton, C. T. (2000). Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochemical and Biophysical Research Communications, 269(1), 172–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Au, P., Tam, J., Fukumura, D., & Jain, R. K. (2008). Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood, 111(9), 4551–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Kotch, L. E., Iyer, N. V., Laughner, E., & Semenza, G. L. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209(2), 254–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicines, 10(8), 858–64.CrossRefGoogle Scholar
  27. 27.
    Raida, M., Clement, J. H., Leek, R. D., et al. (2005). Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. Journal of Cancer Research and Clinical Oncology, 131(11), 741–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90(9), 4304–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Wincewicz, A., Sulkowska, M., Koda, M., Lesniewicz, T., Kanczuga-Koda, L., & Sulkowski, S. (2007). STAT3, HIF-1alpha, EPO and EPOR—signaling proteins in human primary ductal breast cancers. Folia Histochemica et Cytobiologica, 45(2), 81–6.PubMedGoogle Scholar
  30. 30.
    Su, Y., Zheng, L., Wang, Q., Bao, J., Cai, Z., & Liu, A. The PI3K/Akt pathway upregulates Id1 and integrin alpha4 to enhance recruitment of human ovarian cancer endothelial progenitor cells. BMC Cancer, 10, 459.Google Scholar
  31. 31.
    Grote, K., Luchtefeld, M., & Schieffer, B. (2005). JANUS under stress–role of JAK/STAT signaling pathway in vascular diseases. Vascular Pharmacology, 43(5), 357–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G., & Edgar, B. A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 137(7), 1343–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Pan, J., Fukuda, K., Saito, M., et al. (1999). Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circulation Research, 84(10), 1127–36.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karim Belmokhtar
    • 1
    Email author
  • Thierry Bourguignon
    • 1
  • Morel E. Worou
    • 1
  • Georges Khamis
    • 1
  • Pierre Bonnet
    • 1
  • Jorge Domenech
    • 2
  • Véronique Eder
    • 1
  1. 1.Faculty of Medicine, University François RabelaisToursFrance
  2. 2.Microenvironment of Hematopoiesis and Stem CellsFaculty of Medicine, University François RabelaisToursFrance

Personalised recommendations