Stem Cell Reviews and Reports

, Volume 7, Issue 4, pp 898–909

Specific Unsaturated Fatty Acids Enforce the Transdifferentiation of Human Cancer Cells toward Adipocyte-like Cells

  • Antonio Ruiz-Vela
  • Cristóbal Aguilar-Gallardo
  • Ana M. Martínez-Arroyo
  • Mario Soriano-Navarro
  • Verónica Ruiz
  • Carlos Simón


Differentiation therapy pursues the discovery of novel molecules to transform cancer progression into less aggressive phenotypes by mechanisms involving enforced cell transdifferentiation. In this study, we examined the identification of transdifferentiating adipogenic programs in human cancer cell lines (HCCLs). Our findings showed that specific unsatturated fatty acids, such as palmitoleic, oleic and linoleic acids, trigger remarkable phenotypic modifications in a large number of human cancer cell lines (HCCLs), including hepatocarcinoma HUH-7, ovarian carcinoma SK-OV-3, breast adenocarcinoma MCF-7 and melanoma MALME-3M. In particular, we characterized a massive biogenesis of lipid droplets (LDs) and up-regulation of the adipogenic master regulator, PPARG, resulting in the transdifferentiation of HCCLs into adipocyte-like cells. These findings suggest the possibility of a novel strategy in cancer differentiation therapy via switching the identity of HCCLs to an adipogenic phenotype through unsaturated fatty acid-induced transdifferentiation.


Transdifferentiation Adipocytes Lipid Droplets PPARG Unsaturated Fatty Acids 


  1. 1.
    Graf, T., & Enver, T. (2009). Forcing cells to change lineages. Nature, 462(7273), 587–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Kakizuka, A., Miller, W. H., Jr., Umesono, K., et al. (1991). Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell, 66(4), 663–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Warrell, R. P., Jr., Frankel, S. R., Miller, W. H., Jr., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). The New England Journal of Medicine, 324(20), 1385–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruiz-Vela, A., Aguilar-Gallardo, C., & Simon, C. (2009). Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Reviews, 5(4), 319–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Terstappen, L. W., Konemann, S., & Safford, M. (1991). Flow cytometric characterization of acute myeloid leukemia. Part 1. Significance of light scattering properties. Leukemia, 5(4), 315–21.PubMedGoogle Scholar
  8. 8.
    Farese, R. V., Jr., & Walther, T. C. (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell, 139(5), 855–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Suzuki, K., Sakata, N., Hara, M., et al. (1991). Flow cytometric analysis of lipid droplet formation in cells of the human monocytic cell line, U937. Biochemistry and Cell Biology, 69(8), 571–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Kutt, H., & Tsaltas, T. T. (1959). Staining properties of oil red O and a method of partial purification of the commercial product. Clinical Chemistry, 5(2), 149–60.PubMedGoogle Scholar
  11. 11.
    Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. The Journal of Cell Biology, 100(3), 965–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Shiu, R. P., & Paterson, J. A. (1984). Alteration of cell shape, adhesion, and lipid accumulation in human breast cancer cells (T-47D) by human prolactin and growth hormone. Cancer Research, 44(3), 1178–86.PubMedGoogle Scholar
  13. 13.
    Mersmann, H. J., Goodman, J. R., & Brown, L. J. (1975). Development of swine adipose tissue: morphology and chemical composition. Journal of Lipid Research, 16(4), 269–79.PubMedGoogle Scholar
  14. 14.
    Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: the diverse biology of PPARgamma. Annual Review of Biochemistry, 77, 289–312.PubMedCrossRefGoogle Scholar
  15. 15.
    Seale, P., Kajimura, S., Yang, W., et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 6(1), 38–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Hu, E., Tontonoz, P., & Spiegelman, B. M. (1995). Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proceedings of the National Academy of Sciences of the United States of America, 92(21), 9856–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia-Gonzalo, F. R. (2008). Izpisua Belmonte JC. Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE, 3(1), e1384.PubMedCrossRefGoogle Scholar
  18. 18.
    Kallee, E. (1996). Bennhold’s analbuminemia: a follow-up study of the first two cases (1953–1992). The Journal of Laboratory and Clinical Medicine, 127(5), 470–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Davis, B. D., & Dubos, R. J. (1947). The Binding of Fatty Acids by Serum Albumin, a Protective Growth Factor in Bacteriological Media. The Journal of Experimental Medicine, 86(3), 215–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Schopfer, F. J., Lin, Y., Baker, P. R., et al. (2005). Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2340–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Yokoi H, Mizukami H, Nagatsu A, Tanabe H, Inoue M. Hydroxy monounsaturated Fatty acids as agonists for peroxisome proliferator-activated receptors. Biol Pharm Bull;33(5):854–61.Google Scholar
  22. 22.
    Chen, J. S., Greenberg, A. S., & Wang, S. M. (2002). Oleic acid-induced PKC isozyme translocation in RAW 264.7 macrophages. Journal of Cellular Biochemistry, 86(4), 784–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas, M. E., Morrison, A. R., & Schreiner, G. F. (1995). Metabolic effects of fatty acid-bearing albumin on a proximal tubule cell line. The American Journal of Physiology, 268(6 Pt 2), F1177–84.PubMedGoogle Scholar
  24. 24.
    Lafond, J., Simoneau, L., Savard, R., & Gagnon, M. C. (1994). Linoleic acid transport by human placental syncytiotrophoblast membranes. European Journal of Biochemistry, 226(2), 707–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Michaud, S. E., & Renier, G. (2001). Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes, 50(3), 660–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Sauma, L., Stenkula, K. G., Kjolhede, P., Stralfors, P., Soderstrom, M., & Nystrom, F. H. (2006). PPAR-gamma response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition, 22(1), 60–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Kliewer, S. A., Forman, B. M., Blumberg, B., et al. (1994). Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 7355–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Waxman, S. (2000). Differentiation therapy in acute myelogenous leukemia (non-APL). Leukemia, 14(3), 491–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuniyasu, H., Yoshida, K., Sasaki, T., Sasahira, T., Fujii, K., & Ohmori, H. (2006). Conjugated linoleic acid inhibits peritoneal metastasis in human gastrointestinal cancer cells. International Journal of Cancer, 118(3), 571–6.CrossRefGoogle Scholar
  30. 30.
    Todaro, G. J., & Green, H. (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of Cell Biology, 17, 299–313.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Antonio Ruiz-Vela
    • 1
  • Cristóbal Aguilar-Gallardo
    • 1
  • Ana M. Martínez-Arroyo
    • 1
  • Mario Soriano-Navarro
    • 1
  • Verónica Ruiz
    • 1
  • Carlos Simón
    • 1
  1. 1.Valencia Node of the Spanish Stem Cell Bank, Prince Felipe Research Centre (CIPF)ValenciaSpain

Personalised recommendations