Stem Cell Reviews and Reports

, Volume 8, Issue 1, pp 55–66

Developmental Origins of the Adipocyte Lineage: New Insights from Genetics and Genomics Studies

Article

Abstract

The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.

Keywords

Adipocytes Development Origin Brown adipose tissue (BAT) White adipose tissue (WAT) Genomics In vivo lineage tracing 

References

  1. 1.
    Ailhaud, G., & Hauner, H. (2003). Handbook of obesity. New York: Marcel Dekker, Inc.Google Scholar
  2. 2.
    Prunet-Marcassus, B., Cousin, B., Caton, D., et al. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312, 727–736.PubMedCrossRefGoogle Scholar
  3. 3.
    Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131, 242–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorntorp, P. (1990). “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis, 10, 493–496.PubMedCrossRefGoogle Scholar
  6. 6.
    Lafontan, M., & Berlan, M. (2003). Do regional differences in adipocyte biology provide new pathophysiological insights? Trends in Pharmacological Sciences, 24, 276–283.PubMedCrossRefGoogle Scholar
  7. 7.
    Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5, 472–481.PubMedCrossRefGoogle Scholar
  8. 8.
    Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology and Metabolism, 293, E444–452.PubMedCrossRefGoogle Scholar
  9. 9.
    Virtanen, K. A., Lidell, M. E., Orava, J., et al. (2009). Functional brown adipose tissue in healthy adults. The New England Journal of Medicine, 360, 1518–1525.PubMedCrossRefGoogle Scholar
  10. 10.
    Cypess, A. M., Lehman, S., Williams, G., et al. (2009). Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine, 360, 1509–1517.PubMedCrossRefGoogle Scholar
  11. 11.
    van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., et al. (2009). Cold-activated brown adipose tissue in healthy men. The New England Journal of Medicine, 360, 1500–1508.PubMedCrossRefGoogle Scholar
  12. 12.
    Enerback, S. (2010). Human brown adipose tissue. Cell Metabolism, 11, 248–252.PubMedCrossRefGoogle Scholar
  13. 13.
    Nedergaard, J., & Cannon, B. (2010). The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metabolism, 11, 268–272.PubMedCrossRefGoogle Scholar
  14. 14.
    Frontini, A., & Cinti, S. (2010). Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metabolism, 11, 253–256.PubMedCrossRefGoogle Scholar
  15. 15.
    Poissonnet, C. M., LaVelle, M., & Burdi, A. R. (1988). Growth and development of adipose tissue. Jornal de Pediatria, 113, 1–9.Google Scholar
  16. 16.
    Hausman, G. J., & Richardson, L. R. (1982). Histochemical and ultrastructural analysis of developing adipocytes in the fetal pig. Acta Anatomica (Basel), 114, 228–247.CrossRefGoogle Scholar
  17. 17.
    Poissonnet, C. M., Burdi, A. R., & Bookstein, F. L. (1983). Growth and development of human adipose tissue during early gestation. Early Human Development, 8, 1–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metabolism, 4, 263–273.PubMedCrossRefGoogle Scholar
  19. 19.
    Le Douarin, N. M., & Kalcheim, C. (1999). The neural crest. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. 20.
    Gesta, S., Bluher, M., Yamamoto, Y., et al. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 103, 6676–6681.PubMedCrossRefGoogle Scholar
  21. 21.
    Tchkonia, T., Lenburg, M., Thomou, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism, 292, E298–307.PubMedCrossRefGoogle Scholar
  22. 22.
    Vohl, M. C., Sladek, R., Robitaille, J., et al. (2004). A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obesity Research, 12, 1217–1222.PubMedCrossRefGoogle Scholar
  23. 23.
    Cantile, M., Procino, A., D’Armiento, M., et al. (2003). HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. Journal of Cellular Physiology, 194, 225–236.PubMedCrossRefGoogle Scholar
  24. 24.
    Edens, N. K., Fried, S. K., Kral, J. G., et al. (1993). In vitro lipid synthesis in human adipose tissue from three abdominal sites. The American Journal of Physiology, 265, E374–379.PubMedGoogle Scholar
  25. 25.
    Fried, S. K., Leibel, R. L., Edens, N. K., et al. (1993). Lipolysis in intraabdominal adipose tissues of obese women and men. Obesity Research, 1, 443–448.PubMedGoogle Scholar
  26. 26.
    Tchkonia, T., Tchoukalova, Y. D., Giorgadze, N., et al. (2005). Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. American Journal of Physiology. Endocrinology and Metabolism, 288, E267–277.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith, A. G. (2001). Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17, 435–462.PubMedCrossRefGoogle Scholar
  28. 28.
    Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7, 862–869.PubMedCrossRefGoogle Scholar
  29. 29.
    Dani, C., Smith, A. G., Dessolin, S., et al. (1997). Differentiation of embryonic stem cells into adipocytes in vitro. Journal of Cell Science, 110(Pt 11), 1279–1285.PubMedGoogle Scholar
  30. 30.
    Wdziekonski, B., Villageois, P., & Dani, C. (2003). Development of adipocytes from differentiated ES cells. Methods in Enzymology, 365, 268–277.PubMedCrossRefGoogle Scholar
  31. 31.
    Wdziekonski, B., Villageois, P., & Dani, C. (2007). Differentiation of mouse embryonic stem cells and of human adult stem cells into adipocytes. Curr Protoc Cell Biol. Chapter 23:Unit 23 24.Google Scholar
  32. 32.
    Billon, N., Monteiro, M. C., & Dani, C. (2008). Developmental origin of adipocytes: new insights into a pending question. Biology of the Cell, 100, 563–575.PubMedCrossRefGoogle Scholar
  33. 33.
    Monteiro, M. C., Wdziekonski, B., Villageois, P., et al. (2009). Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells and Development, 18, 457–463.PubMedCrossRefGoogle Scholar
  34. 34.
    Billon, N., Kolde, R., Reimand, J., et al. (2010). Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biology, 11, R80.PubMedCrossRefGoogle Scholar
  35. 35.
    Wright, J. T., & Hausman, G. J. (1990). Adipose tissue development in the fetal pig examined using monoclonal antibodies. Journal of Animal Science, 68, 1170–1175.PubMedGoogle Scholar
  36. 36.
    Hausman, G. J., Wright, J. T., Jewell, D. E., et al. (1990). Fetal adipose tissue development. International Journal of Obesity, 14(Suppl 3), 177–185.PubMedGoogle Scholar
  37. 37.
    Miranville, A., Heeschen, C., Sengenes, C., et al. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.PubMedCrossRefGoogle Scholar
  38. 38.
    Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.PubMedCrossRefGoogle Scholar
  39. 39.
    Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.PubMedCrossRefGoogle Scholar
  40. 40.
    Vodyanik, M. A., Yu, J., Zhang, X., et al. (2010). A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell, 7, 718–729.PubMedCrossRefGoogle Scholar
  41. 41.
    Le Douarin, N. M., Creuzet, S., Couly, G., et al. (2004). Neural crest cell plasticity and its limits. Development, 131, 4637–4650.PubMedCrossRefGoogle Scholar
  42. 42.
    Kawaguchi, J., Mee, P. J., & Smith, A. G. (2005). Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone, 36, 758–769.PubMedCrossRefGoogle Scholar
  43. 43.
    Billon, N., Iannarelli, P., Monteiro, M. C., et al. (2007). The generation of adipocytes by the neural crest. Development, 134, 2283–2292.PubMedCrossRefGoogle Scholar
  44. 44.
    Mikkelsen, T. S., Xu, Z., Zhang, X., et al. (2010). Comparative epigenomic analysis of murine and human adipogenesis. Cell, 143, 156–169.PubMedCrossRefGoogle Scholar
  45. 45.
    Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.PubMedCrossRefGoogle Scholar
  46. 46.
    Li, M., Pevny, L., Lovell-Badge, R., et al. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Current Biology, 8, 971–974.PubMedCrossRefGoogle Scholar
  47. 47.
    Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.PubMedCrossRefGoogle Scholar
  48. 48.
    Sengenes, C., Lolmede, K., Zakaroff-Girard, A., et al. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205, 114–122.PubMedCrossRefGoogle Scholar
  49. 49.
    Loncar, D. (1992). Brown adipose tissue as a derivative of mesoderm grafted below the kidney capsule. A model for differentiation of isolated rat mesoderm. The International Journal of Developmental Biology, 36, 265–274.PubMedGoogle Scholar
  50. 50.
    Atit, R., Sgaier, S. K., Mohamed, O. A., et al. (2006). Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Developmental Biology, 296, 164–176.PubMedCrossRefGoogle Scholar
  51. 51.
    Timmons, J. A., Wennmalm, K., Larsson, O., et al. (2007). Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 4401–4406.PubMedCrossRefGoogle Scholar
  52. 52.
    Seale, P., Bjork, B., Yang, W., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.PubMedCrossRefGoogle Scholar
  53. 53.
    Crisan, M., Casteilla, L., Lehr, L., et al. (2008). A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells, 26, 2425–2433.PubMedCrossRefGoogle Scholar
  54. 54.
    Seale, P., Kajimura, S., Yang, W., et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 6, 38–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Kajimura, S., Seale, P., Kubota, K., et al. (2009). Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 460, 1154–1158.PubMedCrossRefGoogle Scholar
  56. 56.
    Kajimura, S., Seale, P., & Spiegelman, B. M. (2010). Transcriptional control of brown fat development. Cell Metabolism, 11, 257–262.PubMedCrossRefGoogle Scholar
  57. 57.
    Cannon, B., & Nedergaard, J. (2008). Developmental biology: neither fat nor flesh. Nature, 454, 947–948.PubMedCrossRefGoogle Scholar
  58. 58.
    Farmer, S. R. (2008). Brown fat and skeletal muscle: unlikely cousins? Cell, 134, 726–727.PubMedCrossRefGoogle Scholar
  59. 59.
    Farmer, S. R. (2008). Molecular determinants of brown adipocyte formation and function. Genes & Development, 22, 1269–1275.CrossRefGoogle Scholar
  60. 60.
    Enerback, S. (2009). The origins of brown adipose tissue. The New England Journal of Medicine, 360, 2021–2023.PubMedCrossRefGoogle Scholar
  61. 61.
    Bowers, R. R., & Lane, M. D. (2007). A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle, 6, 385–389.PubMedCrossRefGoogle Scholar
  62. 62.
    Jin, W., Takagi, T., Kanesashi, S. N., et al. (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Developmental Cell, 10, 461–471.PubMedCrossRefGoogle Scholar
  63. 63.
    Huang, H., Song, T. J., Li, X., et al. (2009). BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 106, 12670–12675.PubMedCrossRefGoogle Scholar
  64. 64.
    Tang, Q. Q., Otto, T. C., & Lane, M. D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 101, 9607–9611.PubMedCrossRefGoogle Scholar
  65. 65.
    Tseng, Y. H., Kokkotou, E., Schulz, T. J., et al. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454, 1000–1004.PubMedCrossRefGoogle Scholar
  66. 66.
    Casteilla, L., Nougues, J., Reyne, Y., et al. (1991). Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium. Importance of glucocorticoids and age of animals. European Journal of Biochemistry, 198, 195–199.PubMedCrossRefGoogle Scholar
  67. 67.
    Cousin, B., Cinti, S., Morroni, M., et al. (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science, 103(Pt 4), 931–942.PubMedGoogle Scholar
  68. 68.
    Xue, B., Coulter, A., Rim, J. S., et al. (2005). Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Molecular and Cellular Biology, 25, 8311–8322.PubMedCrossRefGoogle Scholar
  69. 69.
    Skarulis, M. C., Celi, F. S., Mueller, E., et al. (2010). Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 95, 256–262.PubMedCrossRefGoogle Scholar
  70. 70.
    Lean, M. E., James, W. P., Jennings, G., et al. (1986). Brown adipose tissue in patients with phaeochromocytoma. International Journal of Obesity, 10, 219–227.PubMedGoogle Scholar
  71. 71.
    Vegiopoulos, A., Muller-Decker, K., Strzoda, D., et al. (2010). Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science, 328, 1158–1161.PubMedCrossRefGoogle Scholar
  72. 72.
    Petrovic, N., Walden, T. B., Shabalina, I. G., et al. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. The Journal of Biological Chemistry, 285, 7153–7164.PubMedCrossRefGoogle Scholar
  73. 73.
    Zingaretti, M. C., Crosta, F., Vitali, A., et al. (2009). The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. The FASEB Journal, 23, 3113–3120.CrossRefGoogle Scholar
  74. 74.
    Elabd, C., Chiellini, C., Carmona, M., et al. (2009). Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells, 27, 2753–2760.PubMedCrossRefGoogle Scholar
  75. 75.
    Cinti, S. (2009). Reversible physiological transdifferentiation in the adipose organ. Proceedings of the Nutrition Society:1–10.Google Scholar
  76. 76.
    Loncar, D. (1991). Convertible adipose tissue in mice. Cell and Tissue Research, 266, 149–161.PubMedCrossRefGoogle Scholar
  77. 77.
    Moulin, K., Truel, N., Andre, M., et al. (2001). Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. The Biochemical Journal, 356, 659–664.PubMedCrossRefGoogle Scholar
  78. 78.
    Seale, P., Conroe, H. M., Estall, J., et al. (2011). Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 121, 96–105.PubMedCrossRefGoogle Scholar
  79. 79.
    Guerra, C., Koza, R. A., Yamashita, H., et al. (1998). Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation, 102, 412–420.PubMedCrossRefGoogle Scholar
  80. 80.
    Ishibashi, J., & Seale, P. (2010). Medicine. Beige can be slimming. Science, 328, 1113–1114.PubMedCrossRefGoogle Scholar
  81. 81.
    Sera, Y., LaRue, A. C., Moussa, O., et al. (2009). Hematopoietic stem cell origin of adipocytes. Experimental Hematology, 37, 1108–1120. 1120 e1101-1104.PubMedCrossRefGoogle Scholar
  82. 82.
    Majka, S. M., Fox, K. E., Psilas, J. C., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107, 14781–14786.PubMedCrossRefGoogle Scholar
  83. 83.
    Xiong, C., Xie, C. Q., Zhang, L., et al. (2005). Derivation of adipocytes from human embryonic stem cells. Stem Cells and Development, 14, 671–675.PubMedCrossRefGoogle Scholar
  84. 84.
    Taura, D., Noguchi, M., Sone, M., et al. (2009). Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Letters, 583, 1029–1033.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee, G., Kim, H., Elkabetz, Y., et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology.Google Scholar
  86. 86.
    Wingender, E., Dietze, P., Karas, H., et al. (1996). TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research, 24, 238–241.PubMedCrossRefGoogle Scholar
  87. 87.
    Karolchik, D., Kuhn, R. M., Baertsch, R., et al. (2008). The UCSC Genome Browser Database: 2008 update. Nucleic Acids Research, 36, D773–779.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut Biologie du Développement et Cancer, CNRS UMR 6543, Faculté de Médecine PasteurUniversité de Nice Sophia-AntipolisNice Cedex 2France

Personalised recommendations