Advertisement

Stem Cell Reviews and Reports

, Volume 7, Issue 4, pp 782–796 | Cite as

A Comparison of Stem Cells for Therapeutic Use

  • Denis O. RodgersonEmail author
  • Alan G. Harris
Article

Abstract

A critical comparison of the attributes of several types of stem cells is presented, with particular emphasis on properties that are critical for the application of these cells for therapeutic purposes. The importance of an autologous source of pluripotent stem cells is stressed. It is apparent that two sources currently exist for non-embryonic pluripotent stem cells—very small embryonic-like stem cells (VSELs) and induced pluripotent stem cells (iPS). The impact of the emerging iPS research on therapy is considered.

Keywords

Pluripotency Multipotency Embryonic stem cells Induced pluripotent stem cells Adult stem cells Very small embryonic-like stem cells Autologous stem cells Regenerative medicine 

Notes

Acknowledgements

This review was supported in part by grant R43 AR056893-01A1 from NIAMS. The authors gratefully acknowledge the review of the manuscript by Dr. Mariusz Z. Ratajczak, Henry S. and Stella M. Hoenig Professor, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky. Editorial assistance was provided by Jan S. Redfern, PhD, Redfern Strategic Medical Communications, Inc., Goshen, NY.

Conflict of Interest Statement

The authors are employees of, and own stock in, NeoStem, Inc. D.O.R. is Director of Stem Cell Science. A.G.H. is Vice President of Regenerative Medicine, Drug Development & Regulatory Affairs

References

  1. 1.
    Maitra, A., Arking, D. E., Shivapurkar, N., et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nature Genetics, 37, 1099–1103.PubMedCrossRefGoogle Scholar
  2. 2.
    Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6, e1000029.PubMedCrossRefGoogle Scholar
  3. 3.
    Scott, C. T., & Reijo Pera, R. A. (2008). The road to pluripotence: the research response to the embryonic stem cell debate. Human Molecular Genetics, 17(R1), R3–R9.PubMedCrossRefGoogle Scholar
  4. 4.
    Smart, N., & Riley, P. R. (2008). The stem cell movement. Circulation Research, 102, 1155–1168.PubMedCrossRefGoogle Scholar
  5. 5.
    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the hematopoietic stem cell. Blood Cells, 4, 7–25.PubMedGoogle Scholar
  6. 6.
    Papayannopoulou, T., & Scadden, D. T. (2008). Stem cell ecology and stem cells in motion. Blood, 111, 3923–3930.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, A., Laurenti, E., Oser, G., et al. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, 135, 1118–1129.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327, 542–545.PubMedCrossRefGoogle Scholar
  9. 9.
    Becker, A. J., McCulloch, E. A., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197, 452–454.PubMedCrossRefGoogle Scholar
  10. 10.
    Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.PubMedGoogle Scholar
  11. 11.
    Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.PubMedGoogle Scholar
  12. 12.
    Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annual Review of Pathology: Mechanisms of Disease, 6, 457–478.CrossRefGoogle Scholar
  13. 13.
    Shin, D. M., Liu, R., Klich, I., et al. (2010). Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia, 24, 1450–1461.PubMedCrossRefGoogle Scholar
  14. 14.
    Kucia, M., Reca, R., Jala, V. R., Dawn, B., Ratajczak, J., & Ratajczak, M. Z. (2005). Bone marrow as a home of heterogeneous populations of nonhematopoietic stem cells. Leukemia, 19, 1118–1127.PubMedCrossRefGoogle Scholar
  15. 15.
    Orkin, S. H., & Zon, L. I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunology, 3, 323–328.PubMedCrossRefGoogle Scholar
  16. 16.
    Nayernia, K., Lee, J. H., Drusenheimer, N., et al. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86, 654–663.PubMedCrossRefGoogle Scholar
  17. 17.
    Ratajczak, M. Z., Machalinski, B., Wojakowski, W., Ratajczak, J., & Kucia, M. (2007). A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia, 21, 860–867.PubMedGoogle Scholar
  18. 18.
    Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.PubMedGoogle Scholar
  19. 19.
    Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.PubMedCrossRefGoogle Scholar
  20. 20.
    Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.PubMedCrossRefGoogle Scholar
  22. 22.
    D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., & Schiller, P. C. (2004). Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 117, 2971–2981.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Ippolito, G., Howard, G. A., Roos, B. A., & Schiller, P. C. (2006). Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Experimental Hematology, 34, 1608–1610.PubMedCrossRefGoogle Scholar
  24. 24.
    Beltrami, A. P., Cesselli, D., Bergamin, N., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood, 110, 3438–3446.PubMedCrossRefGoogle Scholar
  25. 25.
    Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynski, M., Ratajczak, J., & Kucina, M. (2008). Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Experimental Hematology, 36, 742–751.PubMedCrossRefGoogle Scholar
  26. 26.
    Hung, S. C., Chen, N. J., Hsieh, S. L., Li, H., Ma, H. L., & Lo, W. H. (2002). Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 20, 249–258.PubMedCrossRefGoogle Scholar
  27. 27.
    Kucia, M., Wysoczynski, M., Ratajczak, J., & Ratajczak, M. Z. (2008). Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell and Tissue Research, 331, 125–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Zuba-Surma, E. K., Kucia, M., Abdel-Latif, A., et al. (2008). Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. Journal of Cellular and Molecular Medicine, 12, 292–303.PubMedCrossRefGoogle Scholar
  29. 29.
    Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.PubMedCrossRefGoogle Scholar
  30. 30.
    Taichman, R. S., Wang, Z., Shiozawa, Y., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19, 1557–1570.PubMedCrossRefGoogle Scholar
  31. 31.
    Kucia, M., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic like (VSEL) stem cells are mobilized into peripheral blood. Stem Cells, 26, 2083–2092.PubMedCrossRefGoogle Scholar
  32. 32.
    Kucia, M., Zhang, Y. P., Reca, R., et al. (2006). Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into peripheral blood following stroke. Leukemia, 20, 18–28.PubMedCrossRefGoogle Scholar
  33. 33.
    Zuba-Surma, E. K., Kucia, M., Dawn, B., Guo, Y., Ratajczak, M. Z., & Bolli, R. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44, 865–873.PubMedCrossRefGoogle Scholar
  34. 34.
    Dawn, B., Tiwari, S., Kucia, M. J., et al. (2008). Transplantation of bone marrow derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–1655.PubMedCrossRefGoogle Scholar
  35. 35.
    Tang, X. L., Rokosh, D. G., Guo, Y., & Bolli, R. (2010). Cardiac progenitor cells and bone marrow derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circulation Journal, 74, 390–404.PubMedCrossRefGoogle Scholar
  36. 36.
    Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.PubMedCrossRefGoogle Scholar
  38. 38.
    Thomson, J. A., Kalishman, J., Golos, T. G., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 92, 7844–7848.PubMedCrossRefGoogle Scholar
  39. 39.
    Amit, M., Carpenter, M. K., Inokuma, M. S., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227, 271–278.PubMedCrossRefGoogle Scholar
  40. 40.
    Kucia, M., Wu, W., & Ratacjzak, M. Z. (2007). Bone marrow-derived very small embryonic-like stem cells: their developmental origin and biological significance. Developmental Dynamics, 236, 3309–3320.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamazaki, Y., Mann, M. R., Lee, S. S., et al. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proceedings of the National Academy of Sciences of the United States of America, 100, 12207–12212.PubMedCrossRefGoogle Scholar
  42. 42.
    Mann, J. R. (2001). Imprinting in the germ line. Stem Cells, 19, 287–294.PubMedCrossRefGoogle Scholar
  43. 43.
    Oosterhuis, J. W., & Looijenga, L. H. (2005). Testicular germ-cell tumours in a broader perspective. Nature Reviews. Cancer, 5, 210–222.PubMedCrossRefGoogle Scholar
  44. 44.
    Reik, W., & Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nature Reviews. Genetics, 2, 21–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Kucia, M., Halasa, M., Wysoczynski, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4e+ Oct-4+ very small embryonic-like cells purified from human cord blood—preliminary report. Leukemia, 21, 297–303.PubMedCrossRefGoogle Scholar
  46. 46.
    Medicetty, S., Ratajczak, M. Z., Kucia, M. J., et al. (2009). Evidence that human very small embryonic-like stem cells (VSELs) are mobilized by G-CSF into peripheral blood: a novel strategy to obtain human pluripotent stem cells for regenerative medicine. Proceedings of the American Society for Hematology, 51st Annual Meeting, New Orleans, LA. Abstract 1474.Google Scholar
  47. 47.
    Sovalat, H., Scrofani, M., Eidenschenk, A., Pasquet, S., Rimelen, V., & Hénon, P. (2011). Identification and isolation from either adult human bone marrow or G-CSF mobilized peripheral blood of CD34+/CD133+/CXCR4+/Lin-CD45- cells, featuring morphological, molecular and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology. doi: 10.1016/j.exphem.2011.01.003.PubMedGoogle Scholar
  48. 48.
    Parte, S., Telang, J., Bhartiya, D., et al. (2011). Detection, characterization and spontaneous differentiation in vitro of very small embryonic-like stem cells in adult mammalian ovary. Stem Cells and Development, in press.Google Scholar
  49. 49.
    Bhartiya, D., Kasiviswanathan, S., Sreepoorna, K., et al. (2011). Newer insights into pre-meiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. Journal of Histochemistry and Cytochemistry, exPRESS, in press.Google Scholar
  50. 50.
    He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., & Dym, M. (2010). Isolation, characterization, and culture of human spermatogonia. Biology of Reproduction, 82, 363–372.PubMedCrossRefGoogle Scholar
  51. 51.
    Kossack, N., Meneses, J., Shefi, S., et al. (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 27, 138–149.PubMedCrossRefGoogle Scholar
  52. 52.
    Mizrak, S. C., Chikhovskaya, J. V., Sadri-Ardekani, H., et al. (2010). Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 25, 158–167.PubMedCrossRefGoogle Scholar
  53. 53.
    Golestaneh, N., Kokkinaki, M., Pant, D., et al. (2009). Pluripotent stem cells derived from adult human testes. Stem Cells and Development, 18, 1115–1126.PubMedCrossRefGoogle Scholar
  54. 54.
    Conrad, S., Renninger, M., Hennenlotter, J., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456(7220), 344–349.PubMedCrossRefGoogle Scholar
  55. 55.
    Virant-Klun, I., Zech, N., Rozman, P., et al. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76, 843–856.PubMedCrossRefGoogle Scholar
  56. 56.
    Virant-Klun, I., Rozman, P., Cvjeticanin, B., et al. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells and Development, 18, 137–149.PubMedCrossRefGoogle Scholar
  57. 57.
    Wojakowski, W., Tendera, T., Kucia, M., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53, 1–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Paczkowska, E., Kucia, M., Koziarska, D., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40, 1237–1244.PubMedCrossRefGoogle Scholar
  59. 59.
    Massa, M., Rosti, V., Ferrario, M., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105, 199–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Fadini, G. P., Sartore, S., Agostini, C., & Avogaro, A. (2007). Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care, 30, 1305–1313.PubMedCrossRefGoogle Scholar
  61. 61.
    Fadini, G. P., Sartore, S., Albiero, M., et al. (2006). Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2140–2146.PubMedCrossRefGoogle Scholar
  62. 62.
    Wojakowski, W., Kucia, M., Wyderka, R, et al. (2006). Mobilization of CXCR4+ stem cells in acute myocardial infarction is correlated with left ventricular ejection fraction and myocardial perfusion assessed by MRI in 1 year follow-up (REGENT trial). Circulation, 114, II_669. Abstract 3162.Google Scholar
  63. 63.
    Leone, A. M., Rutella, S., Bonanno, G., et al. (2005). Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. European Heart Journal, 26, 1196–1204.PubMedCrossRefGoogle Scholar
  64. 64.
    Numaguchi, Y., Sone, T., Okumura, K., et al. (2006). The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation, 114, I-114–I-119.CrossRefGoogle Scholar
  65. 65.
    Zuba-Surma, E. K., Wu, W., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2009). Very small embryonic-like stem cells in adult tissues—potential implications for aging. Mechanisms of Ageing and Development, 130, 58–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D. M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43, 1009–1017.PubMedCrossRefGoogle Scholar
  67. 67.
    Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews. Molecular Cell Biology, 8, 703–713.PubMedCrossRefGoogle Scholar
  68. 68.
    Shin, D. M., Kucia, M., & Ratajczak, M. Z. (2011). Nuclear and chromatin reorganization during cell senescence and aging—a mini-review. Gerontology, 57, 76–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Ratajczak, J., Dhin D. M., Wan, W., et al. (2011). Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice—novel view on Igf-1, stem cells and aging. Leukemia, in press.Google Scholar
  70. 70.
    Wojakowski, W., Tendera, M., Kucia, M., et al. (2010). Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. International Journal of Oncology, 37, 237–247.PubMedGoogle Scholar
  71. 71.
    Zuba-Surma, E. K., Kucia, M., Guo, Y., Dawn, B., Bolli, R., & Ratajczak, M. Z. (2007). An in vivo evidence that murine very small embryonic like (VSEL) stem cells are mobilized into peripheral blood after acute myocardial infarction (AMI) and contribute to myocardiac regeneration. Blood (American Society of Hematology Annual Meeting Abstracts), 110, 3694.Google Scholar
  72. 72.
    Bolli, R. (2007). George E. Brown Memorial Lecture—use of very small embryonic-like (VSEL) stem cells and cardiac stem cells for repair of myocardial infarction. Circulation, 116, Supplement 16, II_C.Google Scholar
  73. 73.
    Chavakis, E., Koyanagi, M., & Dimmeler, S. (2010). Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 121, 325–335.PubMedCrossRefGoogle Scholar
  74. 74.
    Enzmann, V., Yolcu, E., Kaplan, H. J., & Ildstad, S. T. (2009). Stem cells as tools in regenerative therapy for retinal degeneration. Archives of Ophthalmology, 127, 563–571.PubMedCrossRefGoogle Scholar
  75. 75.
    Weiss, D. J., Kolls, J. K., Ortiz, L. A., Panoskaltsis-Mortari, A., & Prockop, D. J. (2008). Stem cells and cell therapies in lung biology and lung diseases. Proceedings of the American Thoracic Society, 5, 637–667.PubMedCrossRefGoogle Scholar
  76. 76.
    di Bonzo, L. V., Ferrero, I., Cravanzola, C., et al. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57, 223–231.PubMedCrossRefGoogle Scholar
  77. 77.
    Krause, D. S. (2008). Bone marrow-derived cells and stem cells in lung repair. Proceedings of the American Thoracic Society, 5, 323–327.PubMedCrossRefGoogle Scholar
  78. 78.
    Kuroda, Y., Kitada, M., Wakao, S., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences of the United States of America, 107, 8639–8643.PubMedCrossRefGoogle Scholar
  79. 79.
    Takahashi, K., Tanabe, T., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMedCrossRefGoogle Scholar
  80. 80.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.PubMedCrossRefGoogle Scholar
  81. 81.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  82. 82.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.PubMedCrossRefGoogle Scholar
  83. 83.
    Miura, K., Okada, Y., Aoi, T., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27, 743–745.PubMedCrossRefGoogle Scholar
  84. 84.
    Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.PubMedCrossRefGoogle Scholar
  86. 86.
    Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming of pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.PubMedCrossRefGoogle Scholar
  87. 87.
    Feng, Q., Lu, S. J., Klimanskaya, I., et al. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells, 28, 704–712.PubMedCrossRefGoogle Scholar
  88. 88.
    Hu, B. Y., Weick, J. P., Yu, J., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107, 4335–4340.PubMedCrossRefGoogle Scholar
  89. 89.
    Djuric, U., & Ellis, J. (2010). Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Research and Therapy, 1, 3.PubMedCrossRefGoogle Scholar
  90. 90.
    Moretti, A., Bellin, M., Welling, A., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363, 1397–1409.PubMedCrossRefGoogle Scholar
  91. 91.
    Rosenzweig, A. (2010). Illuminating the potential of pluripotent stem cells. The New England Journal of Medicine, 363, 1471–1472.PubMedCrossRefGoogle Scholar
  92. 92.
    Stadtfeld, M., Apostolou, E., Akutsu, H., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465(7295), 175–181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.NeoStem, Inc.New YorkUSA

Personalised recommendations