Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 672–682 | Cite as

Hematopoietic Stem Cell Homing to Injured Tissues

  • Dean Philip John Kavanagh
  • Neena KaliaEmail author


The use of stem cells is considered a promising therapy for tissue regeneration and repair, particularly for tissues injured through degeneration, ischemia and inflammation. Bone marrow (BM)-derived haematopoietic stem cells (HSCs) are rare populations of multipotent stem cells that have been identified as promising potential candidates for treating a broad range of conditions. Although research into the use of stem cells for regenerative medicine is on a steep upward slope, clinical success has not been as forthcoming. This has been primarily attributed to a lack of information on the basic biology of stem cells, which remains insufficient to justify clinical studies. In particular, while our knowledge on the molecular adhesive mechanisms and local environmental factors governing stem cell homing to BM is detailed, our understanding of the mechanisms utilized at injured sites is very limited. For instance, it is unclear whether mechanisms used at injured sites are location specific or whether this recruitment can be modulated for therapeutic purposes. In addition, it has recently been suggested that platelets may play an important role in stem cell recruitment to sites of injury. A better understanding of the mechanisms used by stem cells during tissue homing would allow us to develop strategies to improve recruitment of these rare cells. This review will focus on the status of our current understanding of stem cell homing to injured tissues, the role of platelets and directions for the future.


Cell adhesion Cell recruitment Hematopoietic stem cells Stem cells Cell trafficking Platelets 



DPJK is supported by the British Heart Foundation (PG/08/043). The work from our group detailed in this article was supported by grants from the British Heart Foundation (PG/08/043) and The Royal Society.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the preparation or content of this article.


  1. 1.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.PubMedCrossRefGoogle Scholar
  3. 3.
    Kale, S., Karihaloo, A., Clark, P. R., Kashgarian, M., Krause, D. S., & Cantley, L. G. (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. Journal of Clinical Investigation, 112, 42–49.PubMedGoogle Scholar
  4. 4.
    Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Natural Medicines, 6, 1229–1234.CrossRefGoogle Scholar
  5. 5.
    Herzog, E. L., Chai, L., & Krause, D. S. (2003). Plasticity of marrow-derived stem cells. Blood, 102, 3483–3493.PubMedCrossRefGoogle Scholar
  6. 6.
    Houlihan, D. D., & Newsome, P. N. (2008). Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology, 135, 438–450.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehnert, S., Glanemann, M., Schmitt, A., et al. (2009). The possible use of stem cells in regenerative medicine: dream or reality? Langenbeck's archives of surgery/Deutsche Gesellschaft fur Chirurgie.Google Scholar
  8. 8.
    Strauer, B. E., & Kornowski, R. (2003). Stem cell therapy in perspective. Circulation, 107, 929–934.PubMedCrossRefGoogle Scholar
  9. 9.
    Till, J. E., & Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.PubMedCrossRefGoogle Scholar
  10. 10.
    Till, J. E., McCulloch, E. A., & Siminovitch, L. (1964). A Stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences of the United States of America, 51, 29–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Challen, G. A., Boles, N., Lin, K.-Y. K., & Goodell, M. A. (2009). Mouse hematopoietic stem cell identification and analysis. Cytometry. Part A, 75A, 14–24.CrossRefGoogle Scholar
  12. 12.
    Massberg, S., Konrad, I., Schurzinger, K., et al. (2006). Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. The Journal of Experimental Medicine, 203, 1221–1233.PubMedCrossRefGoogle Scholar
  13. 13.
    Wognum, A. W., Eaves, A. C., & Thomas, T. E. (2003). Identification and isolation of hematopoietic stem cells. Archives of Medical Research, 34, 461–475.PubMedCrossRefGoogle Scholar
  14. 14.
    Balazs, A. B., Fabian, A. J., Esmon, C. T., & Mulligan, R. C. (2006). Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood, 107, 2317–2321.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.PubMedCrossRefGoogle Scholar
  16. 16.
    Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F., & Shaper, J. H. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. Journal of Immunology, 133, 157–165.Google Scholar
  17. 17.
    Zanjani, E. D., Alemeida-Porada, G., Livingston, A. G., Flake, A. W., & Ogawa, M. (1998). Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Experimental Hematology, 26, 353–360.PubMedGoogle Scholar
  18. 18.
    Huss, R., Günther, W., Schumm, M., Ottinger, H., Grosse-Wilde, H., & Kolb, H. J. (1997). CD34-Negative Hematopoietic Stem Cells Isolated from Human Peripheral Blood Cells as Ultimate Precursors of Hematopoietic Progenitors. Transfusion Medicine and Hemotherapy, 24, 404–409.CrossRefGoogle Scholar
  19. 19.
    Nakamura, Y., Ando, K., Chargui, J., et al. (1999). Ex Vivo generation of CD34+ cells from CD34- hematopoietic cells. Blood, 94, 4053–4059.PubMedGoogle Scholar
  20. 20.
    Gao, Z., Fackler, M. J., Leung, W., et al. (2001). Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34- cell preparations. Experimental Hematology, 29, 910–921.PubMedCrossRefGoogle Scholar
  21. 21.
    Osawa, M., Hanada, K., Hamada, H., & Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273, 242–245.PubMedCrossRefGoogle Scholar
  22. 22.
    Dalakas, E., Newsome, P. N., Liu, Q., et al. (2003). Mobilization of pluripotent haematopoietic stem cells occurs in alcoholic hepatitis and is associated with an improved clinical outcome. In. 55th Annual Meeting of the American Association for the Study of Liver Diseases. Hepatology, 284A.Google Scholar
  23. 23.
    Lemoli, R. M., Catani, L., Talarico, S., et al. (2006). Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells, 24, 2817–2825.PubMedCrossRefGoogle Scholar
  24. 24.
    Sipkins, D. A., Wei, X., Wu, J. W., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.PubMedCrossRefGoogle Scholar
  25. 25.
    Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., & Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 105, 3793–3801.PubMedCrossRefGoogle Scholar
  26. 26.
    Petit, I., Szyper-Kravitz, M., Nagler, A., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3, 687–694.PubMedCrossRefGoogle Scholar
  27. 27.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicines, 10, 858–864.CrossRefGoogle Scholar
  28. 28.
    Kucia, M., Ratajczak, J., Reca, R., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2004). Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells, Molecules & Diseases, 32, 52–57.CrossRefGoogle Scholar
  29. 29.
    Hattori, K., Heissig, B., Tashiro, K., et al. (2001). Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, 97, 3354–3360.PubMedCrossRefGoogle Scholar
  30. 30.
    Togel, F., Isaac, J., Hu, Z., Weiss, K., & Westenfelder, C. (2005). Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney International, 67, 1772–1784.PubMedCrossRefGoogle Scholar
  31. 31.
    Terada, R., Yamamoto, K., Hakoda, T., et al. (2003). Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Invest, 83, 665–672.PubMedCrossRefGoogle Scholar
  32. 32.
    Mehrad, B., Burdick, M. D., Zisman, D. A., Keane, M. P., Belperio, J. A., & Strieter, R. M. (2007). Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochemical and Biophysical Research Communications, 353, 104–108.PubMedCrossRefGoogle Scholar
  33. 33.
    Zannettino, A. C., Farrugia, A. N., Kortesidis, A., et al. (2005). Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Research, 65, 1700–1709.PubMedCrossRefGoogle Scholar
  34. 34.
    Hattori, K., Dias, S., Heissig, B., et al. (2001). Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of Experimental Medicine, 193, 1005–1014.PubMedCrossRefGoogle Scholar
  35. 35.
    Kollet, O., Shivtiel, S., Chen, Y. Q., et al. (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Journal of Clinical Investigation, 112, 160–169.PubMedGoogle Scholar
  36. 36.
    Papayannopoulou, T., & Nakamoto, B. (1993). Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proceedings of the National Academy of Sciences of the United States of America, 90, 9374–9378.PubMedCrossRefGoogle Scholar
  37. 37.
    Avigdor, A., Goichberg, P., Shivtiel, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.PubMedCrossRefGoogle Scholar
  38. 38.
    Xia, L., McDaniel, J. M., Yago, T., Doeden, A., & McEver, R. P. (2004). Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood, 104, 3091–3096.PubMedCrossRefGoogle Scholar
  39. 39.
    Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2001). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98, 1289–1297.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakano, Y., Kondo, T., Matsuo, R., Murata, S., Fukunaga, K., & Ohkohchi, N. (2009). Prevention of leukocyte activation by the neutrophil elastase inhibitor, sivelestat, in the hepatic microcirculation after ischemia-reperfusion. The Journal of Surgical Research, 155, 311–317.PubMedCrossRefGoogle Scholar
  41. 41.
    Ferry, G., Lonchampt, M., Pennel, L., de Nanteuil, G., Canet, E., & Tucker, G. C. (1997). Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Letters, 402, 111–115.PubMedCrossRefGoogle Scholar
  42. 42.
    Ramirez, P., Rettig, M. P., Uy, G. L., et al. (2009). BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood, 114, 1340–1343.PubMedCrossRefGoogle Scholar
  43. 43.
    Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews. Immunology, 7, 678–689.PubMedCrossRefGoogle Scholar
  44. 44.
    Turner, M. L., McIlwaine, K., Anthony, R. S., & Parker, A. C. (1995). Differential expression of cell adhesion molecules by human hematopoietic progenitor cells from bone marrow and mobilized peripheral blood. Stem Cells, 13, 311–316.PubMedCrossRefGoogle Scholar
  45. 45.
    Kobayashi, M., Imamura, M., Sakurada, K., et al. (1994). Expression of adhesion molecules on human hematopoietic progenitor cells at different maturation stages. Stem Cells, 12, 316.PubMedCrossRefGoogle Scholar
  46. 46.
    Mazo, I. B., Gutierrez-Ramos, J., Frenette, P. S., Hynes, R. O., Wagner, D. D., & von Andrian, U. H. (1998). Hematopoietic progenitor cell rolling in bone marrow microvessels: Parrallel contributions by endothelial selectins and vascular cell adhesion molecule 1. The Journal of Experimental Medicine, 188, 465–474.PubMedCrossRefGoogle Scholar
  47. 47.
    Frenette, P. S., Subbarao, S., Mazo, I. B., von Andrian, U. H., & Wagner, D. D. (1998). Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 95, 14423–14428.PubMedCrossRefGoogle Scholar
  48. 48.
    Peled, A., Kollet, O., Ponomaryov, T., et al. (2000). The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 95, 3289–3296.PubMedGoogle Scholar
  49. 49.
    Hidalgo, A., & Frenette, P. S. (2005). Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood, 105, 567–575.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang, S., Shpall, E., Willerson, J. T., & Yeh, E. T. (2007). Fusion of human hematopoietic progenitor cells and murine cardiomyocytes is mediated by alpha 4 beta 1 integrin/vascular cell adhesion molecule-1 interaction. Circulation Research, 100, 693–702.PubMedCrossRefGoogle Scholar
  51. 51.
    Kavanagh, D. P., Durant, L. E., Crosby, H. A., et al. (2009). Haematopoietic stem cell recruitment to injured murine liver sinusoids depends on {alpha}4{beta}1 integrin/VCAM-1 interactions. Gut, 59, 79–87.CrossRefGoogle Scholar
  52. 52.
    Wong, J., Johnston, B., Lee, S. S., et al. (1997). A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. Journal of Clinical Investigation, 99, 2782–2790.PubMedCrossRefGoogle Scholar
  53. 53.
    Clark, R. A., Alon, R., & Springer, T. A. (1996). CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. The Journal of Cell Biology, 134, 1075–1087.PubMedCrossRefGoogle Scholar
  54. 54.
    Papayannopoulou, T., Priestley, G. V., Nakamoto, B., Zafiropoulos, V., & Scott, L. M. (2001). Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood, 98, 2403–2411.PubMedCrossRefGoogle Scholar
  55. 55.
    Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G. V., & Wolf, N. S. (1995). The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proceedings of the National Academy of Sciences of the United States of America, 92, 9647–9651.PubMedCrossRefGoogle Scholar
  56. 56.
    Jin, H., Aiyer, A., Su, J., et al. (2006). A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. Journal of Clinical Investigation, 116, 652–662.PubMedCrossRefGoogle Scholar
  57. 57.
    Kimura, K., Nagaki, M., Kakimi, K., et al. (2008). Critical role of CD44 in hepatotoxin-mediated liver injury. Journal of Hepatology, 48, 952–961.PubMedCrossRefGoogle Scholar
  58. 58.
    McDonald, B., McAvoy, E. F., Lam, F., et al. (2008). Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. The Journal of Experimental Medicine, 205, 915–927.PubMedCrossRefGoogle Scholar
  59. 59.
    Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45, 514–522.PubMedCrossRefGoogle Scholar
  60. 60.
    Kavanagh, D. P. J., Zhao, Y., Yemm, A. I., & Kalia, N. (2010). Mechansisms of hematopoeitic stem cell recruitment to injured Gut and Muscular microcircualtion [abstract]. Microcirculation, 17, 458–493.Google Scholar
  61. 61.
    Zhao, Y., Kavanagh, D. P., Thysse, J., Frampton, J., & Kalia, N. (2008). Factors contributing to haematopoietic stem cell recruitment to murine cremaster microcirculation [abstract PC71]. Microcirculation, 15, 633–687.CrossRefGoogle Scholar
  62. 62.
    White, R. L., Mann, J., Kavanagh, D. P. J., Savage, C. O. S., & Kalia, N. (2010). Modulating the adhesion of Hematopoietic stem cells to ischemia-reperfusion injured kidney sections and identifictaion of the molecular mechanisms governing their adhesion [abstract]. Microcirculation, 17, 458–493.Google Scholar
  63. 63.
    Rocha, V., & Broxmeyer, H. E. (2010). New approaches for improving engraftment after cord blood transplantation. Biology of Blood and Marrow Transplantation, 16, S126–S132.PubMedCrossRefGoogle Scholar
  64. 64.
    Zaruba, M. M., Theiss, H. D., Vallaster, M., et al. (2009). Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell, 4, 313–323.PubMedCrossRefGoogle Scholar
  65. 65.
    Segers, V. F. M., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116, 1683–1692.PubMedCrossRefGoogle Scholar
  66. 66.
    Zaruba, M. M., & Franz, W. M. (2010). Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opinion on Biological Therapy, 10, 321–335.PubMedCrossRefGoogle Scholar
  67. 67.
    Stroo, I., Stokman, G., Teske, G. J., Florquin, S., & Leemans, J. C. (2009). Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis. Nephrology, Dialysis, Transplantation, 24, 2082–2088.PubMedCrossRefGoogle Scholar
  68. 68.
    Kavanagh, D. P. J. (2010). Molecular events governing hematopoietic stem cell recruitment in vivo in murine liver following Ischemia-reperfusion injury [PhD Thesis]: University of Birmingham. Accessible from
  69. 69.
    Brenner, S., Whiting-Theobald, N., Kawai, T., et al. (2004). CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells, 22, 1128–1133.PubMedCrossRefGoogle Scholar
  70. 70.
    Tarnowski, M., Liu, R., Wysoczynski, M., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2010). CXCR7: a new SDF-1-binding receptor in contrast to normal CD34(+) progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. European Journal of Haematology, 85, 472–483.PubMedCrossRefGoogle Scholar
  71. 71.
    Libert, F., Passage, E., Parmentier, M., Simons, M.-J., Vassart, G., & Mattei, M.-G. (1991). Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor. Genomics, 11, 225–227.PubMedCrossRefGoogle Scholar
  72. 72.
    Thelen, M., & Thelen, S. (2008). CXCR7, CXCR4 and CXCL12: an eccentric trio? Journal of Neuroimmunology, 198, 9–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Hartmann, T. N., Grabovsky, V., Pasvolsky, R., et al. (2008). A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. Journal of Leukocyte Biology, 84, 1130–1140.PubMedCrossRefGoogle Scholar
  74. 74.
    Sierro, F., Biben, C., Martinez-Munoz, L., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 104, 14759–14764.PubMedCrossRefGoogle Scholar
  75. 75.
    Chavakis, E., Aicher, A., Heeschen, C., et al. (2005). Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. The Journal of Experimental Medicine, 201, 63–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Ryzhov, S., Solenkova, N. V., Goldstein, A. E., et al. (2008). Adenosine receptor-mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circulation Research, 102, 356–363.PubMedCrossRefGoogle Scholar
  77. 77.
    Schoenhard, J. A., & Hatzopoulos, A. K. (2010). Stem Cell Therapy: Pieces of the Puzzle. Journal of cardiovascular translational research, 3, 49–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Sarkar, D., Vemula, P. K., Teo, G. S., et al. (2008). Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjugate Chemistry, 19, 2105–2109.PubMedCrossRefGoogle Scholar
  79. 79.
    Varga-Szabo, D., Pleines, I., & Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 403–412.PubMedCrossRefGoogle Scholar
  80. 80.
    Langer, H., May, A. E., Daub, K., et al. (2006). Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circulation Research, 98, e2–e10.PubMedCrossRefGoogle Scholar
  81. 81.
    de Boer, H. C., Verseyden, C., Ulfman, L. H., et al. (2006). Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1653–1659.PubMedCrossRefGoogle Scholar
  82. 82.
    Stellos, K., Langer, H., Daub, K., et al. (2008). Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation, 117, 206–215.PubMedCrossRefGoogle Scholar
  83. 83.
    Stellos, K., Bigalke, B., Langer, H., et al. (2009). Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. European Heart Journal, 30, 584–593.PubMedCrossRefGoogle Scholar
  84. 84.
    Daub, K., Langer, H., Seizer, P., et al. (2006). Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. The FASEB Journal, 20, 2559–2561.PubMedCrossRefGoogle Scholar
  85. 85.
    Peled, A., Grabovsky, V., Habler, L., et al. (1999). The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. Journal of Clinical Investigation, 104, 1199–1211.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical SchoolUniversity of BirminghamBirminghamUK

Personalised recommendations