Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 683–692

Stem Cells in Tooth Tissue Regeneration—Challenges and Limitations

Article

Abstract

The accelerated pace of research in the stem cell field in recent decades and the accumulated body of knowledge has spurred the interest in potential clinical applications of stem cells in all branches of medicine including regenerative dentistry. In humans, embryonic and adult stem cells are two major groups of cells that can serve as a donor source in tissue engineering strategies based on ex-vivo cellular expansion. It has been shown that adult stem cell populations are present in all examined living tissues of the organism, thus being a crucial source of tissue homeostasis and regeneration, and offering a target population for in situ stimulation of extensive tissue regeneration. Experimental findings indicate that in the complex structure of the tooth organ, both periodontal and endodontic tissues harbour adult stem cells with characteristics peculiar to early stages of cellular differentiation. Myriad of strategies incorporating both embryonic and adult stem cells for the regeneration of a particular tooth structure or the whole teeth were proposed; however their successful application to solve real problems encountered in the clinical practice of dentistry remains an elusive and challenging objective.

Keywords

Tooth tissue regeneration Dental Periodontal Endodontic Tissue engineering Regenerative dentistry Stem cell therapy Resident stem cells 

References

  1. 1.
    Allison, M. R., & Islam, S. (2009). Attributes of adult stem cells. Journal of Pathology, 217(2), 144–160.CrossRefGoogle Scholar
  2. 2.
    Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82(3), 252–264.PubMedCrossRefGoogle Scholar
  3. 3.
    Kraitchman, D. L., & Bulte, J. W. (2009). In vivo imaging of stem cells and beta cells using direct cell labelling and reporter gene methods. Artheriosclerosis Thrombosis and Vascular Biology, 29(7), 1025–1030.CrossRefGoogle Scholar
  4. 4.
    Min, J. Y., Yang, Y., Converso, K. L., Liu, L., Huang, Q., Morgan, J. P., et al. (2002). Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. Journal of Applied Physiology, 92(1), 288–296.PubMedCrossRefGoogle Scholar
  5. 5.
    Einstein, O., Friedman-Levy, Y., Grigoriadis, N., & Ben-Hur, T. (2009). Transplanted neural precursors enhance host brain-derived myelin regeneration. Journal of Neuroscience, 29(50), 15694–15702.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsai, P. S., Fu, T. W., Chen, Y. M., Ko, T. L., Chen, T. H., Shih, Y. H., et al. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15(5), 484–495.PubMedCrossRefGoogle Scholar
  7. 7.
    Krause, D. S. (2008). Bone marrow-derived cells and stem cells in lung repair. The Proceedings of the American Thoracic Society, 5(3), 323–327.CrossRefGoogle Scholar
  8. 8.
    Dalgetty, D. M., Medine, C. N., Iredale, J. P., & Hay, D. C. (2009). Progress and future challenges in stem cell-derived liver technologies. American Journal of Physiology—Gastrointestinal and Liver Physiology, 297(2), G241–G248.PubMedCrossRefGoogle Scholar
  9. 9.
    Dekel, B., Shezen, E., Even-Toy-Friedman, S., Katchman, H., Margalit, R., Nagler, A., et al. (2006). Transplantation of human hematopoietic stem cells into ischemic and growing kidneys suggests a role in vasculogenesis but not tubulogenesis. Stem Cells, 24(5), 1185–1193.PubMedCrossRefGoogle Scholar
  10. 10.
    Joggers, S. J., & Hatzopoulos, A. K. (2009). Stem cell therapy for cardiac repair: benefits and barriers. Expert Reviews in Molecular Medicine, 11, e20.CrossRefGoogle Scholar
  11. 11.
    Kotton, D. N., Fabian, A. J., & Mulligan, R. C. (2005). Failure of bone marrow to reconstitute lung epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 328–334.PubMedCrossRefGoogle Scholar
  12. 12.
    Zippel, N., Schulze, M., & Tobiasch, E. (2010). Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Patents on Biotechnology, 4(1), 1–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Gyorevski, N., & Nelson, C. M. (2009). Bidirectional extracellular matrix signalling during tissue morphogenesis. Cytokine & Growth Factor Reviews, 20(5–6), 459–465.CrossRefGoogle Scholar
  14. 14.
    Guillot, P. V., Cui, W., Fisk, N. M., & Polak, D. J. (2007). Stem cell differentiation and expansion for clinical applications of tissue engineering. Journal of Cellular and Molecular Medicine, 11(5), 935–944.PubMedCrossRefGoogle Scholar
  15. 15.
    Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213(2), 341–347.PubMedCrossRefGoogle Scholar
  16. 16.
    Santiago, J. A., Pogemiller, R., & Ogle, B. M. (2009). Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Engineering Part A, 15(12), 3911–3922.PubMedCrossRefGoogle Scholar
  17. 17.
    Ho, A. D., Wagner, W., & Franke, W. (2008). Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 10(4), 320–330.PubMedCrossRefGoogle Scholar
  18. 18.
    Tormin, A., Brune, J. C., Olsson, E., Valcich, J., Neuman, U., Olofsson, T., et al. (2009). Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets. Cytotherapy, 11(2), 114–128.PubMedCrossRefGoogle Scholar
  19. 19.
    Atkinson, S., & Armstrong, L. (2008). Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell and Tissue Research, 331(1), 23–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Gaziova, I., & Bhat, K. M. (2007). Generating asymmetry: with and without self-renewal. Progress in Molecular and Subcellular Biology, 45, 143–178.PubMedCrossRefGoogle Scholar
  21. 21.
    Gibson, J. D., Jakuba, C. M., Boucher, N., Holbrook, K. A., Carter, M. G., & Nelson, C. E. (2009). Single-cell transcript analysis of human embryonic stem cells. Integrative Biology (Cambridge), 1(8–9), 540–551.CrossRefGoogle Scholar
  22. 22.
    Moogk, D., Stewart, M., Gamble, D., Bhatia, M., & Jervis, E. (2010). Human ESC colony formation is dependent on interplay between self-renewing hESCs and unique precursors responsible for niche generation. Cytometry Part A, 77(4), 321–327.CrossRefGoogle Scholar
  23. 23.
    Kirouac, D. C., Ito, C., Csaszar, E., Roch, A., Yu, M., Sykes, E. A., et al. (2010). Dynamic interaction networks in a hierarchically organized tissue. Molecular Systems Biology, 6, 417.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosso, F., Giordano, A., Barbarisi, M., & Barbarisi, A. (2004). From cell-ECM interactions to tissue engineering. Journal of Cellular Physiology, 199(2), 174–180.PubMedCrossRefGoogle Scholar
  25. 25.
    Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology, 288(4), 304–317.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirouac, D. C., Madlambayan, G. J., Yu, M., Sykes, E. A., Ito, C., & Zandstra, P. W. (2009). Cell-cell interaction networks regulate blood stem and progenitor cell fate. Molecular Systems Biology, 5, 293.PubMedCrossRefGoogle Scholar
  27. 27.
    Zacchigna, S., Ruiz de Almodovar, C., & Carmeliet, P. (2008). Similarities between angiogenesis and neural development: what small animal models can tell us. Current Topics in Developmental Biology, 80, 1–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121, 255–264.PubMedCrossRefGoogle Scholar
  29. 29.
    Guilak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., & Chen, C. S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Nöth, U., Rackwitz, L., Steinert, A. F., & Tuan, R. S. (2010). Cell delivery therapeutics for musculoskeletal regeneration. Advanced Drug Delivery Reviews, 62(7–8), 765–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Ahmed, T. A., Dare, E. V., & Hincke, M. (2008). Fibrin: a versatile scaffold for tissue engineering applications. Tissue Engineering Part B Reviews, 14(2), 199–215.PubMedCrossRefGoogle Scholar
  32. 32.
    Minoux, M., & Rijli, F. M. (2010). Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development, 137(16), 2605–2621.PubMedCrossRefGoogle Scholar
  33. 33.
    Bluteau, G., Luder, H. U., De Bari, C., & Mitsiadis, T. A. (2008). Stem cells for tooth engineering. European Cells & Materials, 16, 1–9.Google Scholar
  34. 34.
    Jernvall, J., & Thesleff, I. (2000). Reiterative signalling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), 19–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Tucker, A. S., & Sharpe, P. T. (1999). Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. Journal of Dental Research, 78(4), 826–834.PubMedCrossRefGoogle Scholar
  36. 36.
    Koussoulakou, D. S., Margaritis, L. H., & Koussoulakos, S. L. (2009). A curriculum vitae of teeth: evolution, generation, regeneration. International Journal of Biological Sciences, 5, 226–243.PubMedGoogle Scholar
  37. 37.
    Sarkar, L., Cobourne, M., Naylor, S., Smalley, M., Dale, T., & Sharpe, P. R. (2000). Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proceedings of the National Academy of Sciences of the USA, 97(9), 4520–4524.PubMedCrossRefGoogle Scholar
  38. 38.
    Jarvinen, E., Tummers, M., & Thesleff, I. (2009). The role of the dental lamina in mammalian tooth replacement. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 312B(4), 281–291.CrossRefGoogle Scholar
  39. 39.
    Thesleff, I., & Tummers, M. (January 31, 2009). Tooth organogenesis and regeneration. StemBook, ed. Stem Cell Community, StemBook, doi:10.3824/stembook.1.37.1, http://www.stembook.org/
  40. 40.
    Mitsiadis, T. A., & Graf, D. (2009). Cell fate determination during tooth development and regeneration. Birth Defects Research Part C Embryo Today, 87(3), 199–211.CrossRefGoogle Scholar
  41. 41.
    Zhang, Y. D., Chen, Z., Song, Y. Q., Liu, C., & Chen, Y. P. (2005). Making a tooth: growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301–316.PubMedCrossRefGoogle Scholar
  42. 42.
    Blaushild, N., Michaeli, Y., & Steigman, S. (1992). Histomorphometric study of the periodontal vasculature of the rat incisor. Journal of Dental Research, 71(12), 1908–1912.PubMedCrossRefGoogle Scholar
  43. 43.
    Norer, B., Kranewitter, R., & Emshoff, R. (1999). Pulpal blood-flow characteristics of maxillary tooth morphotypes as assessed with laser Doppler flowmetry. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 87(1), 88–92.CrossRefGoogle Scholar
  44. 44.
    Smith, A. J., Cassidy, N., Perry, H., Beque-Kirn, C., Ruch, J. V., & Lesot, H. (1995). Reactionary dentinogenesis. International Journal of Developmental Biology, 39(1), 273–280.PubMedGoogle Scholar
  45. 45.
    Smith, A. J., Murray, P. E., Sloan, A. J., Matthews, J. B., & Zhao, S. (2001). Trans-dentinal stimulation of tertiary dentinogenesis. Advances in Dental Research, 15, 51–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Cooper, P. R., Takahashi, Y., Graham, L. W., Simon, S., Imazato, S., & Smith, A. J. (2010). Inflammation-regeneration interplay in the dentine-pulp complex. Journal of Dentistry, 38(9), 687–697.PubMedCrossRefGoogle Scholar
  47. 47.
    Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab Aziz, Z. A., Zain, R. B., et al. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504–1515.PubMedCrossRefGoogle Scholar
  48. 48.
    Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Tomokiyo, A., Maeda, H., Fujii, S., Wada, N., Shima, K., & Akamine, A. (2008). Development of a multipotent clonal human periodontal ligament cell line. Differentiation, 76(4), 337–47.PubMedCrossRefGoogle Scholar
  50. 50.
    Singhatanadgit, W., Donos, N., & Olsen, I. (2009). Isolation and characterization of stem cell clones from adult human ligament. Tissue Engineering Part A, 15(9), 2625–2636.PubMedCrossRefGoogle Scholar
  51. 51.
    Riekstina, U., Cakstina, I., Parfejevs, V., Hoodguijn, M., Jankovskis, G., Muiznieks, I., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Reviews and Reports, 5(4), 378–386.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, S. H., Jeyapalan, J. N., Appleby, V., Mohamed Noor, D. A., Sottile, V., & Scotting, P. J. (2010). Dynamic methylation and expression of Oct4 in early neural stem cells. Journal of Anatomy, 217(3), 203–213.PubMedCrossRefGoogle Scholar
  53. 53.
    Marynka-Kalmani, K., Treves, S., Yafee, M., Rachima, H., Gafni, Y., Cohen, M. A., et al. (2010). The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells, 28(5), 984–95.PubMedGoogle Scholar
  54. 54.
    Georgantas, R. W., 3rd, Tanadve, V., Malehorn, M., Heimfeld, S., Chen, C., Carr, L., et al. (2004). Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Research, 64(13), 4434–4441.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang, J., & Wang, J. H. (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskeletal Disorders, 11, 10.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim, J. H., Jee, M. K., Lee, S. Y., Han, T. H., Kim, B. S., Kang, K. S., et al. (2009). Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control. PLoS One, 4(9), e7166.PubMedCrossRefGoogle Scholar
  57. 57.
    Yu, H., Fang, D., Kumar, S. M., Li, L., Nguyen, T. K., Acs, G., et al. (2006). Isolation of a novel population of multipotent adult stem cells from human hair follicles. American Journal of Pathology, 168(6), 1879–1888.PubMedCrossRefGoogle Scholar
  58. 58.
    Teo, A. K., & Vallier, L. (2010). Emerging use of stem cells in regenerative medicine. Biochemical Journal, 428(1), 11–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Hipp, J., & Atala, A. (2008). Sources of stem cells for regenerative medicine. Stem Cell Reviews and Reports, 4(1), 3–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitalipov, V., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in Biochemical Engineering / Biotechnology, 114, 185–199.PubMedGoogle Scholar
  61. 61.
    Barzilay, R., Melamed, E., & Offen, D. (2009). Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells, 27(10), 2509–2515.PubMedCrossRefGoogle Scholar
  62. 62.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells, 25(11), 2896–2902.PubMedCrossRefGoogle Scholar
  63. 63.
    Hemphill, E. E., Dharia, A. P., Lee, C., Jacuba, C. M., Gibson, J. D., Kolling, F. W., 4th, et al. (2010). SCLD: a stem cell lineage database for the annotation of cell types and developmental lineages. Nucleic Acids Research, 39(1), D525–D533.PubMedGoogle Scholar
  64. 64.
    Salazar-Ciudad, I., & Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences of the USA, 99(12), 8116–8120.PubMedCrossRefGoogle Scholar
  65. 65.
    Brook, A. H. (2009). Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Archives of Oral Biology, Suppl, 1, S3–S17.CrossRefGoogle Scholar
  66. 66.
    Takada, I., Kouzmenko, A. P., & Kato, S. (2009). Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opinion on Therapeutic Targets, 13(5), 593–603.PubMedCrossRefGoogle Scholar
  67. 67.
    Bueno, M., & Glowacki, J. (2009). Cell-free and cell-based approaches for bone regeneration. Nature Reviews Rheumatology, 5(12), 685–697.PubMedCrossRefGoogle Scholar
  68. 68.
    Yu, H., VandeVord, P. J., Mao, L., Matthew, H. W., Wooley, P. H., & Yang, S. Y. (2009). Improved tissue-engineered bone regeneration by endothelial cell mediated vascularisation. Biomaterials, 30(4), 508–517.PubMedCrossRefGoogle Scholar
  69. 69.
    Erba, P., Mantovani, C., Kalbermatten, D. F., Pierer, G., Terenghi, G., & Kingham, P. J. (2010). Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. Journal of Plastic and Reconstructive Aesthetic Surgery, 63(12), e811–817.CrossRefGoogle Scholar
  70. 70.
    Chen, K. A., Lanuto, D., Zheng, T., & Steindler, D. A. (2009). Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells, 27(7), 1625–1634.PubMedCrossRefGoogle Scholar
  71. 71.
    Ikeda, E., Morita, R., Nakao, K., Ishida, K., Nakamura, T., Takano-Yamamoto, T., et al. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences of the USA, 106(32), 13475–13480.PubMedCrossRefGoogle Scholar
  72. 72.
    Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.PubMedCrossRefGoogle Scholar
  73. 73.
    Laino, G., d’Aquino, R., Graziano, A., Lanza, V., Carinci, F., Naro, F., et al. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20(8), 1394–1402.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang, W., Walboomers, X. F., Shi, S., Fan, M., & Jansen, J. A. (2006). Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Engineering, 12, 2813–2823.PubMedCrossRefGoogle Scholar
  75. 75.
    Batouli, S., Miura, M., Brahim, J., Tsutsui, T. W., Fisher, L. W., Gronthos, S., et al. (2003). Comparison of stem-cell-mediated osteogenesis and dentinogenesis. Journal of Dental Research, 82(12), 976–981.PubMedCrossRefGoogle Scholar
  76. 76.
    Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the USA, 100, 5807–5812.PubMedCrossRefGoogle Scholar
  77. 77.
    Kerkis, I., Kerkis, A., Dozortsev, D., Stukart-Parsons, G. C., Gomes Massironi, S. M., Pereira, L. V., et al. (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs, 184, 105–116.PubMedCrossRefGoogle Scholar
  78. 78.
    Abe, S., Yamaguchi, S., & Amagasa, T. (2007). Multilineage cells from apical pulp of human tooth with immature apex. Oral Science International, 4, 45–58.Google Scholar
  79. 79.
    Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., et al. (2008). Characterization of apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. Journal of Endodontics, 34, 166–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Morsczeck, C., Götz, W., Schierholz, J., Zeilhofer, F., Kühn, U., Möhl, C., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24, 155–165.PubMedCrossRefGoogle Scholar
  81. 81.
    Kemoun, P., Laurencin-Dalicieux, S., Rue, J., Farges, J. C., Gennero, I., Conte-Auriol, F., et al. (2007). Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell and Tissue Research, 329, 283–294.PubMedCrossRefGoogle Scholar
  82. 82.
    Gay, I., Chen, S., & MacDougall, M. (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics & Craniofacial Research, 10, 149–160.CrossRefGoogle Scholar
  83. 83.
    Xu, J., Wang, W., Kapila, Y., Lotz, J., & Kapila, S. (2009). Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells and Development, 18, 487–496.PubMedCrossRefGoogle Scholar
  84. 84.
    Inanç, B., Elçin, A. E., & Elçin, Y. M. (2006). Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions. Tissue Engineering, 12(2), 257–266.PubMedCrossRefGoogle Scholar
  85. 85.
    Inanç, B., Elçin, A. E., Koç, A., Baloş, K., Parlar, A., & Elçin, Y. M. (2007). Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. Journal of Biomedical Materials Research Part A, 82(4), 917–926.PubMedCrossRefGoogle Scholar
  86. 86.
    Kadar, K., Kiraly, M., Porcsalmy, B., Molnar, B., Racz, G. Z., Blazsek, J., et al. (2009). Differentiation potential of stem cells from human dental origin-promise for tissue engineering. Journal of Physiology and Pharmacology, 60(Suppl 7), 167–75.PubMedGoogle Scholar
  87. 87.
    Kossoulakou, D. S., Margaritis, L. H., & Koussoulakos, S. L. (2009). A curriculum vitae of teeth: evolution, generation, regeneration. International Journal of Biological Sciences, 5(3), 226–243.Google Scholar
  88. 88.
    Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., & Yelick, P. C. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695–700.PubMedCrossRefGoogle Scholar
  89. 89.
    Li, Y., Jin, F., Du, Y., Ma, Z., Li, F., Wu, G., et al. (2008). Cementum and periodontal ligament-like tissue formation induced using bioengineered dentin. Tissue Engineering Part A, 14(10), 1731–1742.PubMedCrossRefGoogle Scholar
  90. 90.
    Flores, M. G., Hasegawa, M., Yamato, M., Takagi, R., Okano, T., & Ishikawa, I. (2008). Cementum-periodontal ligament complex regeneration using the cell sheet technique. Journal of Periodontal Research, 43(3), 364–371.PubMedCrossRefGoogle Scholar
  91. 91.
    Kramer, P. R., Nares, S., Kramer, S. F., Grogan, D., & Kaiser, M. (2004). Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. Journal of Dental Research, 83(1), 27–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Inanç, B., Elçin, A. E., Unsal, E., Baloş, K., Parlar, A., & Elçin, Y. M. (2008). Differentiation of human embryonic stem cells on periodontal ligament fibroblasts in vitro. Artificial Organs, 32(2), 100–109.PubMedCrossRefGoogle Scholar
  93. 93.
    Yu, J., Wang, Y., Deng, Z., Tang, L., Li, Y., Shi, J., et al. (2007). Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biology of the Cell, 99(8), 465–474.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang, Y. D., Chen, Z., Song, Y. Q., Liu, C., & Chen, Y. P. (2005). Making a tooth: growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301–316.PubMedCrossRefGoogle Scholar
  95. 95.
    Kapadia, H., Mues, G., & D’Souza, R. (2007). Genes affecting tooth morphogenesis. Orthodontics & Craniofacial Research, 10(4), 237–244.CrossRefGoogle Scholar
  96. 96.
    Niswander, L., & Martin, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114(3), 755–768.PubMedGoogle Scholar
  97. 97.
    Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.PubMedCrossRefGoogle Scholar
  98. 98.
    Inanç, B., Elçin, A. E., & Elçin, Y. M. (2007). Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artificial Organs, 31(11), 792–800.PubMedCrossRefGoogle Scholar
  99. 99.
    Inanç, B., Elçin, A. E., & Elçin, Y. M. (2009). In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces. Tissue Engineering Part A, 15(11), 3427–3435.PubMedCrossRefGoogle Scholar
  100. 100.
    Kooreman, N. G., & Wu, J. C. (2010). Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. Journal of the Royal Society Interface, 7(Suppl 6), S753–763.CrossRefGoogle Scholar
  101. 101.
    Choi, J., Curtis, S. J., Roy, D. M., Flesken-Nikitin, A., & Nikitin, A. Y. (2010). Local mesenchymal stem/progenitor cells are a preferential target for initiation of adult soft tissue sarcomas associated with p53 and Rb deficiency. American Journal of Pathology, 177(5), 2645–2658.PubMedCrossRefGoogle Scholar
  102. 102.
    Fong, C. Y., Gauthaman, K., & Bongso, A. (2010). Teratomas from pluripotent stem cells: a clinical hurdle. Journal of Cellular Biochemistry, 111(4), 769–781.PubMedCrossRefGoogle Scholar
  103. 103.
    Chen, F. M., Zhang, J., Zhang, M., An, Y., Chen, F., & Wu, Z. F. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 31(31), 7892–7927.PubMedCrossRefGoogle Scholar
  104. 104.
    Huang, G. T. (2009). Pulp and dentin tissue engineering and regeneration: current progress. Regenerative Medicine, 4(5), 697–707.PubMedCrossRefGoogle Scholar
  105. 105.
    McGuire, M. K., Scheyer, E. T., Nunn, M. E., & Lavin, P. T. (2008). A pilot study to evaluate a tissue-engineered bilayered cell therapy as an alternative to tissue from the palate. Journal of Periodontology, 79(10), 1847–1856.PubMedCrossRefGoogle Scholar
  106. 106.
    Mohammadi, M., Shokrgozar, M. A., & Mofid, R. (2007). Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its of its effects on attached gingival: a randomized, controlled pilot study. Journal of Periodontology, 78(10), 1897–1903.PubMedCrossRefGoogle Scholar
  107. 107.
    McGuire, M. K., & Nunn, M. E. (2005). Evaluation of the safety and efficacy of periodontal applications of a living tissue-engineered human fibroblast-derived dermal substitute. I. Comparison to the gingival autograft: a randomized controlled pilot study. Journal of Periodontology, 76(6), 867–880.PubMedCrossRefGoogle Scholar
  108. 108.
    Jhaveri, H. M., Chavan, M. S., Tomar, G. B., Deshmukh, V. L., Wani, M. R., & Miller, P. D., Jr. (2010). Acellular dermal matrix seeded with autologous gingival fibroblasts for the treatment of gingival recession: a proof-of-concept study. Journal of Periodontology, 81(4), 616–625.PubMedCrossRefGoogle Scholar
  109. 109.
    D’Aquino, R., De Rosa, A., Lanza, V., Tirino, V., Laino, L., Graziano, A., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells & Materials, 18, 75–83.Google Scholar
  110. 110.
    Okuda, K., Yamamiya, K., Kawase, T., Mizuno, H., Ueda, M., & Yoshie, H. (2009). Treatment of human infrabony periodontal defects by grafting human cultured periosteum sheets combined with platelet-rich plasma and porous hydrohyapatite granules: case series. Journal of the International Academy of Periodontology, 11(3), 206–213.PubMedGoogle Scholar
  111. 111.
    Luan, X., Ito, Y., & Diekwisch, T. G. (2006). Evolution and development of Hertwig’s epithelial root sheath. Developmental Dynamics, 235(5), 1167–1180.PubMedCrossRefGoogle Scholar
  112. 112.
    Rincon, J. C., Young, W. G., & Bartold, P. M. (2006). The epithelial cell rests of Malassez—a role in periodontal regeneration? Journal of Periodontal Research, 41(4), 245–252.PubMedCrossRefGoogle Scholar
  113. 113.
    Harada, H., & Ohshima, H. (2004). New perspectives on tooth development and the dental stem cell niche. Archives of Histology and Cytology, 67(1), 1–11.PubMedCrossRefGoogle Scholar
  114. 114.
    Pardal, R., Molofsky, A. V., He, S., & Morrison, S. J. (2005). Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harbor Symposium on Quantitative Biology, 70, 177–185.CrossRefGoogle Scholar
  115. 115.
    Harper, L. J., Costea, D. E., Gammon, L., Fazil, B., Biddle, A., & Mackenzie, I. C. (2010). Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer, 10, 166.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Tissue Engineering, Biomaterials & Nanobiotechnology LaboratoryAnkara University Stem Cell Institute and Faculty of ScienceAnkaraTurkey
  2. 2.Department of Periodontology, Faculty of DentistryYuzuncu Yil UniversityVanTurkey

Personalised recommendations