Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 488–493 | Cite as

Mammalian Cell Dedifferentiation as a Possible Outcome of Stress

Article

Abstract

Differentiation cascades are arranged hierarchically; stem cells positioned at the top of the hierarchy generate committed progenitors that, in turn, proliferate and further differentiate stepwise into mature progeny. This rigid, irreversible structure ensures the phenotypic stability of adult tissues. However, such rigidity may be problematic under conditions of tissue damage when reconstitution is required. Although it may seem unlikely that the restrictions on changes in cell phenotypes would be lifted to enable tissue reconstitution, it is nevertheless possible that mammalian tissues are endowed with sufficient flexibility to enable their adaptation to extreme conditions.

Keywords

Stem cells Mammalian cells Dedifferentiation Stress Pluripotency Reprogramming Epigenetics 

References

  1. 1.
    Anjos-Afonso, F., & Bonnet, D. (2007). Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109, 1298–1306.PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong, L., Lako, M., Dean, W., & Stojkovic, M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24, 805–814.PubMedCrossRefGoogle Scholar
  3. 3.
    Barroca, V., Lassalle, B., Coureuil, M., Louis, J. P., Le Page, F., Testart, J., et al. (2009). Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol, 11, 190–196.PubMedCrossRefGoogle Scholar
  4. 4.
    Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., & Blau, H. M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 463, 1042–1047.PubMedCrossRefGoogle Scholar
  6. 6.
    Birnbaum, K. D., & Sanchez Alvarado, A. (2008). Slicing across kingdoms: regeneration in plants and animals. Cell, 132, 697–710.PubMedCrossRefGoogle Scholar
  7. 7.
    Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304, 1331–1334.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, Z. L., Yu, W. M., & Strickland, S. (2007). Peripheral regeneration. Annu Rev Neurosci, 30, 209–233.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen, A. R., Gomes, F. L., Roysam, B., & Cayouette, M. (2010). Computational prediction of neural progenitor cell fates. Nat Methods, 7, 213–218.PubMedCrossRefGoogle Scholar
  10. 10.
    Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., et al. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2, 437–447.PubMedCrossRefGoogle Scholar
  11. 11.
    Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol, 15, 1176–1183.PubMedCrossRefGoogle Scholar
  12. 12.
    Flores, I., Canela, A., Vera, E., Tejera, A., Cotsarelis, G., & Blasco, M. A. (2008). The longest telomeres: a general signature of adult stem cell compartments. Genes Dev, 22, 654–667.PubMedCrossRefGoogle Scholar
  13. 13.
    Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M. J., Heidersbach, A., et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460, 863–868.PubMedGoogle Scholar
  14. 14.
    Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460.PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., & Verfaillie, C. M. (2002). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 30, 896–904.PubMedCrossRefGoogle Scholar
  16. 16.
    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.PubMedCrossRefGoogle Scholar
  17. 17.
    Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.PubMedCrossRefGoogle Scholar
  18. 18.
    Kilian, A., Stiff, C., & Kleinhofs, A. (1995). Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci U S A, 92, 9555–9559.PubMedCrossRefGoogle Scholar
  19. 19.
    Klein, A. M., Nakagawa, T., Ichikawa, R., Yoshida, S., & Simons, B. D. (2010). Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell, 7, 214–224.PubMedCrossRefGoogle Scholar
  20. 20.
    Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell, 5, 87–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuroda, Y., Kitada, M., Wakao, S., Nishikawa, K., Tanimura, Y., Makinoshima, H., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A, 107, 8639–8643.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, H. K., Shin, Y. K., Jung, J., Seo, S. Y., Baek, S. Y., & Park, H. T. (2009). Proteasome inhibition suppresses Schwann cell dedifferentiation in vitro and in vivo. Glia, 57, 1825–1834.PubMedCrossRefGoogle Scholar
  24. 24.
    Li, W. C., Rukstalis, J. M., Nishimura, W., Tchipashvili, V., Habener, J. F., Sharma, A., et al. (2010). Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci, 123, 2792–2802.PubMedCrossRefGoogle Scholar
  25. 25.
    Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Marion, R. M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., et al. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4, 141–154.PubMedCrossRefGoogle Scholar
  27. 27.
    Meech, R., Gomez, M., Woolley, C., Barro, M., Hulin, J. A., Walcott, E. C., et al. (2010). The homeobox transcription factor Barx2 regulates plasticity of young primary myofibers. PLoS One, 5, e11612.PubMedCrossRefGoogle Scholar
  28. 28.
    Michalopoulos, G. K., & DeFrances, M. C. (1997). Liver regeneration. Science, 276, 60–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Michalopoulos, G. K., Barua, L., & Bowen, W. C. (2005). Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology, 41, 535–544.PubMedCrossRefGoogle Scholar
  30. 30.
    Monje, P. V., Soto, J., Bacallao, K., & Wood, P. M. (2010). Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: Role of cAMP and JNK the maintenance of the differentiated state. J Biol Chem, 285, 31024–31036.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E., & Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 328, 62–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Niemann, H., Tian, X. C., King, W. A., & Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 135, 151–163.PubMedCrossRefGoogle Scholar
  33. 33.
    Notaro, R., Cimmino, A., Tabarini, D., Rotoli, B., & Luzzatto, L. (1997). In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci U S A, 94, 13782–13785.PubMedCrossRefGoogle Scholar
  34. 34.
    Odelberg, S. J., Kollhoff, A., & Keating, M. T. (2000). Dedifferentiation of mammalian myotubes induced by msx1. Cell, 103, 1099–1109.PubMedCrossRefGoogle Scholar
  35. 35.
    Ohm, J. E., Mali, P., Van Neste, L., Berman, D. M., Liang, L., Pandiyan, K., et al. (2010). Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Research, 70(19), 7662–7673.PubMedCrossRefGoogle Scholar
  36. 36.
    Prindull, G., & Zipori, D. (2004). Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 103(8), 2892–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549–553.PubMedCrossRefGoogle Scholar
  38. 38.
    Salo, E., Abril, J. F., Adell, T., Cebria, F., Eckelt, K., Fernandez-Taboada, E., et al. (2009). Planarian regeneration: achievements and future directions after 20 years of research. Int J Dev Biol, 53, 1317–1327.PubMedCrossRefGoogle Scholar
  39. 39.
    Sanchez Alvarado, A. (2006). Planarian regeneration: its end is its beginning. Cell, 124, 241–245.PubMedCrossRefGoogle Scholar
  40. 40.
    Simon, L., Ekman, G. C., Kostereva, N., Zhang, Z., Hess, R. A., Hofmann, M. C., et al. (2009). Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells, 27, 1666–1675.PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  42. 42.
    Thorel, F., Nepote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., et al. (2010). Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature, 464, 1149–1154.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao, T., & Xu, Y. (2010). p53 and stem cells: new developments and new concerns. Trends Cell Biol, 20, 170–175.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao, X. Y., Su, Y. H., Cheng, Z. J., & Zhang, X. S. (2008). Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol, 50, 816–824.PubMedCrossRefGoogle Scholar
  45. 45.
    Zipori, D. (2004). The nature of stem cells: state rather than entity. Nat Rev Genet, 5, 873–878.PubMedCrossRefGoogle Scholar
  46. 46.
    Zipori, D. (2009). Biology of stem cells and the molecular basis of the stem state. New York: Humana Press.Google Scholar
  47. 47.
    Zipori, D. (2009b). The stem state: Stemness as a state in the cell’s life cycle. In K. Turksen (Ed.), Biology of stem cells and the molecular basis of the stem state, Chapter 6. Series: Stem cell biology and regenerative medicine (pp. 200–206). New York: Humana Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations