Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 560–568 | Cite as

The Origins of Mesenchymal Stromal Cell Heterogeneity

  • Meirav Pevsner-Fischer
  • Sarit Levin
  • Dov ZiporiEmail author


Cultured mesenchymal stromal cell (MSC) populations are best characterized by the capacity of some cells within this population to differentiate into mesodermal derivatives such as osteoblasts, chondrocytes and adipocytes. However, this progenitor property is not shared by all cells within the MSC population. Furthermore, MSCs exhibit variability in their phenotypes, including proliferation capacity, expression of cell surface markers and ability to secrete cytokines. These facts raise three major questions: (1) Does the in vitro observed variability reflect the existence of MSC subsets in vivo? (2) What is the molecular basis of the in vitro observed heterogeneity? and (3) What is the biological significance of this variability? This review considers the possibility that the variable nature of MSC populations contributes to the capacity of adult mammalian tissues to adapt to varying microenvironmental demands.


Mesechymal stromal cells Stem cells Heterogeneity Plasticity Hierarchal differentiation Stem state 



The authors are indebted to the Helen and Martin Kimmel Institute for Stem Cell Research and the M.D. Moross Institute for Cancer Research, at the Weizmann Institute, the Gabrielle Rich Center for Transplantation Biology and the support of the Legacy Heritage Fund of New York. DZ is an incumbent of the Joe and Celia Weinstein Professorial Chair at the Weizmann Institute of Science.

Conflicts of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2, 83–92.PubMedGoogle Scholar
  2. 2.
    Friedenstein, A. J., Piatetzky, S., II, & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.PubMedGoogle Scholar
  3. 3.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.PubMedCrossRefGoogle Scholar
  4. 4.
    Phinney, D. G., Kopen, G., Righter, W., Webster, S., Tremain, N., & Prockop, D. J. (1999). Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. Journal of Cellular Biochemistry, 75, 424–436.PubMedCrossRefGoogle Scholar
  5. 5.
    Phinney, D. G., Kopen, G., Isaacson, R. L., & Prockop, D. J. (1999). Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. Journal of Cellular Biochemistry, 72, 570–585.PubMedCrossRefGoogle Scholar
  6. 6.
    Werts, E. D., DeGowin, R. L., Knapp, S. K., & Gibson, D. P. (1980). Characterization of marrow stromal (fibroblastoid) cells and their association with erythropoiesis. Experimental Hematology, 8, 423–433.PubMedGoogle Scholar
  7. 7.
    Allen, T. D., & Dexter, T. M. (1983). Long term bone marrow cultures: an ultrastructural review. Scan Electron Microsc, 1851–1866.Google Scholar
  8. 8.
    Kuznetsov, S. A., Krebsbach, P. H., Satomura, K., et al. (1997). Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. Journal of Bone and Mineral Research, 12, 1335–1347.PubMedCrossRefGoogle Scholar
  9. 9.
    Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7841–7845.PubMedCrossRefGoogle Scholar
  10. 10.
    Zipori, D. (2009). Biology of stem cells and the molecular basis of the stem state. Humana Pr Inc. New York.Google Scholar
  11. 11.
    Zipori, D., Duksin, D., Tamir, M., Argaman, A., Toledo, J., & Malik, Z. (1985). Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. Journal of Cellular Physiology, 122, 81–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Tremain, N., Korkko, J., Ibberson, D., Kopen, G. C., DiGirolamo, C., & Phinney, D. G. (2001). MicroSAGE analysis of 2, 353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 19, 408–418.PubMedCrossRefGoogle Scholar
  13. 13.
    Matsuzaki, Y., Kinjo, K., Mulligan, R. C., & Okano, H. (2004). Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20, 87–93.PubMedCrossRefGoogle Scholar
  14. 14.
    McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C., & Dick, J. E. (2006). Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunology, 7, 1225–1233.PubMedCrossRefGoogle Scholar
  15. 15.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Morikawa, S., Mabuchi, Y., Kubota, Y., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine, 206, 2483–2496.PubMedCrossRefGoogle Scholar
  17. 17.
    Anjos-Afonso, F., & Bonnet, D. (2007). Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109, 1298–1306.PubMedCrossRefGoogle Scholar
  18. 18.
    Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.PubMedCrossRefGoogle Scholar
  19. 19.
    Gronthos, S., Zannettino, A. C., Hay, S. J., et al. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science, 116, 1827–1835.PubMedCrossRefGoogle Scholar
  20. 20.
    Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.PubMedGoogle Scholar
  21. 21.
    Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., & Deliliers, G. L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30, 783–791.PubMedCrossRefGoogle Scholar
  22. 22.
    Buhring, H. J., Battula, V. L., Treml, S., Schewe, B., Kanz, L., & Vogel, W. (2007). Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Sciences, 1106, 262–271.PubMedCrossRefGoogle Scholar
  23. 23.
    Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedCrossRefGoogle Scholar
  24. 24.
    Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O’Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28, 788–798.PubMedCrossRefGoogle Scholar
  25. 25.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedCrossRefGoogle Scholar
  26. 26.
    Muraglia, A., Cancedda, R., & Quarto, R. (2000). Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Journal of Cell Science, 113(Pt 7), 1161–1166.PubMedGoogle Scholar
  27. 27.
    Okamoto, T., Aoyama, T., Nakayama, T., et al. (2002). Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 295, 354–361.PubMedCrossRefGoogle Scholar
  28. 28.
    Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., & Prockop, D. J. (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal Haematology, 107, 275–281.CrossRefGoogle Scholar
  29. 29.
    Ylostalo, J., Bazhanov, N., & Prockop, D. J. (2008). Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies. Experimental Hematology, 36, 1390–1402.PubMedCrossRefGoogle Scholar
  30. 30.
    Sengers, B. G., Dawson, J. I., & Oreffo, R. O. (2010). Characterisation of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modelling. Bone, 46, 496–503.PubMedCrossRefGoogle Scholar
  31. 31.
    Le Blanc, K., Samuelsson, H., Lonnies, L., Sundin, M., & Ringden, O. (2007). Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation, 84, 1055–1059.PubMedCrossRefGoogle Scholar
  32. 32.
    Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Briquet, A., Dubois, S., Bekaert, S., Dolhet, M., Beguin, Y., & Gothot, A. (2010). Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica, 95, 47–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14.PubMedCrossRefGoogle Scholar
  35. 35.
    Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Wagner, W., Horn, P., Castoldi, M., et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE, 3, e2213.PubMedCrossRefGoogle Scholar
  37. 37.
    Schallmoser, K., Bartmann, C., Rohde, E., et al. (2010). Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, 95, 867–874.PubMedCrossRefGoogle Scholar
  38. 38.
    Izadpanah, R., Kaushal, D., Kriedt, C., et al. (2008). Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Research, 68, 4229–4238.PubMedCrossRefGoogle Scholar
  39. 39.
    Bork, S., Pfister, S., Witt, H., et al. (2010). DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell, 9, 54–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Zipori, D. (2010). The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenvironment, 3, 15–28.PubMedCrossRefGoogle Scholar
  41. 41.
    Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering. Part B: Reviews, 16, 445–453.CrossRefGoogle Scholar
  42. 42.
    Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67, 9142–9149.PubMedCrossRefGoogle Scholar
  43. 43.
    Colter, D. C., Class, R., DiGirolamo, C. M., & Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 97, 3213–3218.PubMedCrossRefGoogle Scholar
  44. 44.
    Fehrer, C., Brunauer, R., Laschober, G., et al. (2007). Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 6, 745–757.PubMedCrossRefGoogle Scholar
  45. 45.
    Pevsner-Fischer, M., & Zipori, D. (2009). Environmental signals regulating mesenchymal progenitor cell growth and differentiation. In VKV Rajasekhar & C. Mohan (Eds.), Regulatory networks in stem cells. 1st ed (p. 175–184) Humana.Google Scholar
  46. 46.
    Bruder, S. P., Jaiswal, N., & Haynesworth, S. E. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry, 64, 278–294.PubMedCrossRefGoogle Scholar
  47. 47.
    Zipori, D., Friedman, A., Tamir, M., Silverberg, D., & Malik, Z. (1984). Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. Journal of Cellular Physiology, 118, 143–152.PubMedCrossRefGoogle Scholar
  48. 48.
    Shoham, T., Sternberg, D., Brosh, N., Krupsky, M., Barda-Saad, M., & Zipori, D. (2001). The promotion of plasmacytoma tumor growth by mesenchymal stroma is antagonized by basic fibroblast growth factor induced activin A. Leukemia, 15, 1102–1110.PubMedCrossRefGoogle Scholar
  49. 49.
    Phinney, D. G., Hill, K., Michelson, C., et al. (2006). Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells, 24, 186–198.PubMedCrossRefGoogle Scholar
  50. 50.
    Phinney, D. G. (2007). Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle, 6, 2884–2889.PubMedCrossRefGoogle Scholar
  51. 51.
    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.PubMedCrossRefGoogle Scholar
  52. 52.
    da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.PubMedCrossRefGoogle Scholar
  53. 53.
    Guillot, P. V., De Bari, C., Dell’Accio, F., Kurata, H., Polak, J., & Fisk, N. M. (2008). Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 76, 946–957.PubMedGoogle Scholar
  54. 54.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 52, 2521–2529.PubMedCrossRefGoogle Scholar
  55. 55.
    Zipori, D. (2005). The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 23, 719–726.PubMedCrossRefGoogle Scholar
  56. 56.
    Hay, E. D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Developmental Dynamics, 233, 706–720.PubMedCrossRefGoogle Scholar
  57. 57.
    Prindull, G., & Zipori, D. (2004). Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 103, 2892–2899.PubMedCrossRefGoogle Scholar
  58. 58.
    Aubin, J. E. (1998). Bone stem cells. Journal of Cellular Biochemistry. Supplement, 30–31, 73–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R., & Quarto, R. (2000). Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Experimental Hematology, 28, 707–715.PubMedCrossRefGoogle Scholar
  60. 60.
    Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE, 4, e6498.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen, F. G., Zhang, W. J., Bi, D., et al. (2007). Clonal analysis of nestin(−) vimentin(+) multipotent fibroblasts isolated from human dermis. Journal of Cell Science, 120, 2875–2883.PubMedCrossRefGoogle Scholar
  62. 62.
    Bianco, P., Robey, P. G., Saggio, I., & Riminucci, M. (2010). “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Human Gene Therapy, 21, 1057–1066.PubMedCrossRefGoogle Scholar
  63. 63.
    Weissman, I. L., & Shizuru, J. A. (2008). The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112, 3543–3553.PubMedCrossRefGoogle Scholar
  64. 64.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  65. 65.
    Zipori, D. (2006). The stem state: mesenchymal plasticity as a paradigm. Current Stem Cell Research & Therapy, 1, 95–102.CrossRefGoogle Scholar
  66. 66.
    Zipori, D. (2004). Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells, Molecules & Diseases, 33, 211–215.CrossRefGoogle Scholar
  67. 67.
    Sternberg, D., Peled, A., Shezen, E., et al. (1996). Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines and Molecular Therapy, 2, 29–38.PubMedGoogle Scholar
  68. 68.
    Zipori, D., Toledo, J., & von der Mark, K. (1985). Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood, 66, 447–455.PubMedGoogle Scholar
  69. 69.
    Verfaillie, C. M. (2002). Adult stem cells: assessing the case for pluripotency. Trends in Cell Biology, 12, 502–508.PubMedCrossRefGoogle Scholar
  70. 70.
    Dickhut, A., Pelttari, K., Janicki, P., et al. (2009). Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. Journal of Cellular Physiology, 219, 219–226.PubMedCrossRefGoogle Scholar
  71. 71.
    Matsumoto, T., Kano, K., Kondo, D., et al. (2008). Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. Journal of Cellular Physiology, 215, 210–222.PubMedCrossRefGoogle Scholar
  72. 72.
    Schilling, T., Kuffner, R., Klein-Hitpass, L., Zimmer, R., Jakob, F., & Schutze, N. (2008). Microarray analyses of transdifferentiated mesenchymal stem cells. Journal of Cellular Biochemistry, 103, 413–433.PubMedCrossRefGoogle Scholar
  73. 73.
    Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and Cellular Endocrinology, 271, 1–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Sato, Y., Araki, H., Kato, J., et al. (2005). Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106, 756–763.PubMedCrossRefGoogle Scholar
  75. 75.
    Hermann, A., Gastl, R., Liebau, S., et al. (2004). Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. Journal of Cell Science, 117, 4411–4422.PubMedCrossRefGoogle Scholar
  76. 76.
    Song, L., & Tuan, R. S. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18, 980–982.PubMedGoogle Scholar
  77. 77.
    Spees, J. L., Olson, S. D., Ylostalo, J., et al. (2003). Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proceedings of the National Academy of Sciences of the United States of America, 100, 2397–2402.PubMedCrossRefGoogle Scholar
  78. 78.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.PubMedCrossRefGoogle Scholar
  79. 79.
    Krinner, A., Hoffmann, M., Loeffler, M., Drasdo, D., & Galle, J. (2010). Individual fates of mesenchymal stem cells in vitro. BMC Systems Biology, 4, 73.PubMedCrossRefGoogle Scholar
  80. 80.
    Enver, T., Heyworth, C. M., & Dexter, T. M. (1998). Do stem cells play dice? Blood, 92, 348–351. discussion 52.PubMedGoogle Scholar
  81. 81.
    Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.PubMedCrossRefGoogle Scholar
  82. 82.
    Blake, W. J., Kaern, M., Cantor, C. R., & Collins, J. J. (2003). Noise in eukaryotic gene expression. Nature, 422, 633–637.PubMedCrossRefGoogle Scholar
  83. 83.
    Pedraza, J. M., & van Oudenaarden, A. (2005). Noise propagation in gene networks. Science, 307, 1965–1969.PubMedCrossRefGoogle Scholar
  84. 84.
    Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 1183–1186.PubMedCrossRefGoogle Scholar
  85. 85.
    Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews. Genetics, 6, 451–464.PubMedCrossRefGoogle Scholar
  86. 86.
    Furusawa, C., & Kaneko, K. (2009). Chaotic expression dynamics implies pluripotency: when theory and experiment meet. Biology Direct, 4, 17.PubMedCrossRefGoogle Scholar
  87. 87.
    Krinner, A., Zscharnack, M., Bader, A., Drasdo, D., & Galle, J. (2009). Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Proliferation, 42, 471–484.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Meirav Pevsner-Fischer
    • 1
  • Sarit Levin
    • 1
  • Dov Zipori
    • 1
    Email author
  1. 1.Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations