Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 664–671 | Cite as

Differentiated Mesenchymal Stem Cells for Sciatic Nerve Injury

  • Michal Dadon-Nachum
  • Ofer Sadan
  • Itay Srugo
  • Eldad Melamed
  • Daniel OffenEmail author


Sciatic nerve injury is common and may cause neurological deficits. Previous studies showed that administration of neurotrophic factors (NTFs), naturally occurring proteins that support the development and survival of neurons, preserved and protected damaged motor neuron in the injured sciatic nerve. We have been successful in converting bone marrow-derived mesenchymal stem cells into astrocyte-like cells that produce and secrete NTFs (NTF+ cells). These cells demonstrate typical astrocyte morphology, express characteristic astrocyte markers and secrete high levels of NTFs. We have already shown that these cells and their conditioned media can protect neurons in culture and in animal models of neurodegenerative diseases. In the current study we examined whether NTF+ cells are capable of rescuing motor neurons in a rat sciatic nerve injury model, where the right hind limb sciatic nerve was crushed. Rats were transplanted with NTF+ cells, MSCs or PBS into the lesion site. In rats injected with the NTF+ cells motor function was markedly preserved. Moreover, NTF+ cells significantly inhibited the degeneration of the neuromuscular junctions and preserved the myelinated motor axons. Our findings suggest that autologous therapeutic approach can alleviate signs of sciatic nerve injury and probably other neurological disorders.


Sciatic nerve injury Motor neuron Mesenchymal stem cells Neurotrophic factors 



This work was preformed in partial fulfillment of the requirements for a Ph.D. degree for Michal Dadon. This work was supported, in part, by The Devora Eleonora Kirshman Fund for Research of Parkinson’s Disease, Tel Aviv University and by the Norma and Alan Aufzein chair of Research of Parkinson’s Disease.

The authors wish to thank Dr. Igor Tarasenko for his exceptional assistance with the animal model.

Conflict of Interest statement

The authors declare no potential conflicts of interest.


  1. 1.
    Konstantinou, K., & Dunn, K. M. (2008). Sciatica: review of epidemiological studies and prevalence estimates. Spine, 33(22), 2464–2472.PubMedCrossRefGoogle Scholar
  2. 2.
    Amoh, Y., Kanoh, M., Niiyama, S., Hamada, Y., Kawahara, K., Sato, Y., et al. (2009). Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells. Journal of Cellular Biochemistry, 107(5), 1016–1020.PubMedCrossRefGoogle Scholar
  3. 3.
    Goel, R. K., Suri, V., Suri, A., Sarkar, C., Mohanty, S., Sharma, M. C., et al. (2009). Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. Journal of Clinical Neuroscience, 16(9), 1211–1217.PubMedCrossRefGoogle Scholar
  4. 4.
    Pan, H. C., Yang, D. Y., Ho, S. P., Sheu, M. L., Chen, C. J., Hwang, S. M., et al. (2009). Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. Journal of Biomedical Science, 16, 75.PubMedCrossRefGoogle Scholar
  5. 5.
    Santiago, L. Y., Clavijo-Alvarez, J., Brayfield, C., Rubin, J. P., & Marra, K. G. (2009). Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplantation, 18(2), 145–158.PubMedCrossRefGoogle Scholar
  6. 6.
    Fryer, H. J., Wolf, D. H., Knox, R. J., Strittmatter, S. M., Pennica, D., O’Leary, R. M., et al. (2000). Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultured embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. Journal of Neurochemistry, 74(2), 582–595.PubMedCrossRefGoogle Scholar
  7. 7.
    Hu, P., & Kalb, R. G. (2003). BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. Journal of Neurochemistry, 84(6), 1421–1430.PubMedCrossRefGoogle Scholar
  8. 8.
    Mousavi, K., Parry, D. J., & Jasmin, B. J. (2004). BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. The American Journal of Physiology, 287(1), C22–C29.CrossRefGoogle Scholar
  9. 9.
    Ozdinler, P. H., & Macklis, J. D. (2006). IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neuroscience, 9(11), 1371–1381.PubMedCrossRefGoogle Scholar
  10. 10.
    Acsadi, G., Anguelov, R., Yang, H., Toth, G., Thomas, R., Jani, A., et al. (2002). Increased survival and function of SOD1 mice after Glial cell-derived neurotrophic factor gene therapy. Human Gene Therapy, 10(13), 1047–1059.CrossRefGoogle Scholar
  11. 11.
    Mohajeri, H., Figlewicz, D., & Bohn, M. (1999). Intramuscular grafts of myoblasts genetically modified to secrete glial cell iine-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Human Gene Therapy, 10, 1853–1866.PubMedCrossRefGoogle Scholar
  12. 12.
    Sakowski, S. A., Schuyler, A. D., & Feldman, E. L. (2009). Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis: Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 10(2), 63–73.Google Scholar
  13. 13.
    Dobrowolny, G., Giacinti, C., Pelosi, L., Nicoletti, C., Winn, N., Barberi, L., et al. (2005). Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. The Journal of Cell Biology, 168(2), 193–199.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, W., Brakefield, D., Pan, Y., Hunter, D., Myckatyn, T. M., & Parsadanian, A. (2007). Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Experimental Neurology, 203(2), 457–471.PubMedCrossRefGoogle Scholar
  15. 15.
    Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., et al. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 27(2), 195–200.PubMedCrossRefGoogle Scholar
  16. 16.
    Rabinovsky, E. D., Gelir, E., Gelir, S., Lui, H., Kattash, M., DeMayo, F. J., et al. (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 17(1), 53–55.Google Scholar
  17. 17.
    Crone, S. A., & Lee, K. F. (2002). Gene targeting reveals multiple essential functions of the neuregulin signaling system during development of the neuroendocrine and nervous systems. Annals of the New York Academy of Sciences, 971, 547–553.PubMedCrossRefGoogle Scholar
  18. 18.
    Azzouz, M., Ralph, G. S., Storkebaum, E., Walmsley, L. E., Mitrophanous, K. A., Kingsman, S. M., et al. (2004). VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 429(6990), 413–417.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, Y., Mao, X. O., Xie, L., Banwait, S., Marti, H. H., Greenberg, D. A., et al. (2007). Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27(2), 304–307.Google Scholar
  20. 20.
    Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M. P., Appelmans, S., Oh, H., et al. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neuroscience, 8(1), 85–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng, C., Sköld, M. K., Li, J., Nennesmo, I., Fadeel, B., & Henter, J. I. (2007). VEGF reduces astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochemical and Biophysical Research Communications, 363(4), 989–993.PubMedCrossRefGoogle Scholar
  22. 22.
    Blondheim, N. R., Levy, Y. S., Ben-Tzur, T., Burshtein, A., Cherlow, T., Kan, I., et al. (2006). Human mesenchymal stem cells express neuronal genes, suggesting a neural predisposition. Stem Cells and Development, 15, 141–164.PubMedCrossRefGoogle Scholar
  23. 23.
    Hellmann, M. A., Panet, H., Barhum, Y., Melamed, E., & Offen, D. (2006). Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6- hydroxydopamine lesioned rodents. Neuroscience Letters, 395, 124–128.PubMedCrossRefGoogle Scholar
  24. 24.
    Karusis, D., Kasis, I., Kurkalli, B. G., & Slavin, S. (2008). Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. Journal of the Neurological Sciences, 265, 131–135.CrossRefGoogle Scholar
  25. 25.
    Tang, Y., Yasuhara, T., Hara, K., Matsukawa, N., Maki, M., Yu, G., et al. (2007). Transplantation of bone marrow derived stem cells: a promising therapy for stroke. Cell Transplantation, 16, 159–169.PubMedGoogle Scholar
  26. 26.
    Offen, D., Barhum, Y., Melamed, E., Embacher, N., Schindler, C., & Ransmayr, G. (2009). Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. Journal of Molecular Neuroscience, 38(2), 85–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Sadan, O., Shemesh, N., Barzilay, R., Bahat-Stromza, M., Melamed, E., Cohen, Y., et al. (2008). Migration of neurotrophic factors secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells, 10, 2542–2551.CrossRefGoogle Scholar
  28. 28.
    Boucherie, C., & Hermans, E. (2008). Adult stem cell therapies for neurological disorders: benefits beyond neuronal replacement? Journal of Neuroscience Research, 87(7), 1509–1521.CrossRefGoogle Scholar
  29. 29.
    Gerner, P., Binshtock, A. M., Wang, C. F., Hevelone, N. D., Bean, B. P., Woolf, C. J., et al. (2008). Capsaicin combined with local anesthetics preferentially prolongs sensory/nociceptive block in rat sciatic nerve. Anesthesiology, 109(5), 872–878.PubMedCrossRefGoogle Scholar
  30. 30.
    Pan, H. C., Yang, D. Y., Chiu, Y. T., Lai, S. Z., Wang, Y. C., Chang, M. H., et al. (2006). Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cells. Journal of Clinical Neuroscience, 13, 570–575.PubMedCrossRefGoogle Scholar
  31. 31.
    Pan, H. C., Cheng, F. C., Chen, C. J., Lai, S. Z., Lee, C. W., Yang, D. Y., et al. (2007). Post injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. Journal of Clinical Neuroscience, 14, 1089–1098.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim, S., Honmou, O., Kato, K., Nonaka, T., Houkin, K., Hamada, H., et al. (2006). Neuronal differentiation potential of peripheral blood and bone marrow derived precursor cells. Brain Research, 1123, 27–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Pineda, J. R., Rubio, N., Akerud, P., Urbán, N., Badimon, L., Arenas, E., et al. (2007). Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model: optical neuroimage tracking of brain-grafted cells. Gene Therapy, 14, 118–128.PubMedGoogle Scholar
  34. 34.
    Cheng, F. C., Tai, M. H., Sheu, M. L., Chen, C. J., Yang, D. Y., Su, H. L., et al. (2009). Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. Journal of Neurosurgery, 112(4), 868–879.CrossRefGoogle Scholar
  35. 35.
    Suzuki, M., McHugh, J., Tork, C., Shelley, B., Hayes, A., Bellantuono, I., et al. (2008). Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Molecular Therapy: the Journal of the American Society of Gene Therapy, 16(12), 2002–2010.Google Scholar
  36. 36.
    Sadan, O., Bahat-Stromza, M., Barhum, Y., Levy, Y. S., Pisnevsky, A., Peretz, H., et al. (2009). Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells and Development, 18(8), 1179–1190.PubMedCrossRefGoogle Scholar
  37. 37.
    Barhum, Y., Gai-Castro, S., Bahat-Stromza, M., Barzilay, R., Melamed, E., & Offen, D. (2010). Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. Journal of Molecular Neuroscience, 41(1), 129–137.PubMedCrossRefGoogle Scholar
  38. 38.
    Bahat-Stroomza, M., Barhum, Y., Levy, Y. S., Karpov, O., Bulvik, S., Melamed, E., et al. (2009). Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. Journal of Molecular Neuroscience, 39(1–2), 199–210.PubMedCrossRefGoogle Scholar
  39. 39.
    Levy, Y. S., Bahat-Stroomza, M., Barzilay, R., Burshtein, A., Bulvik, S., et al. (2008). Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson’s disease. Cytotherapy, 10(4), 340–352.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michal Dadon-Nachum
    • 1
  • Ofer Sadan
    • 1
  • Itay Srugo
    • 2
  • Eldad Melamed
    • 3
  • Daniel Offen
    • 1
    Email author
  1. 1.Laboratory of Neurosciences, Felsenstein Medical Research Center, Beilinson Campus and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
  3. 3.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations