Stem Cell Reviews and Reports

, Volume 7, Issue 2, pp 364–380 | Cite as

In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells

  • Sveva Bollini
  • Michela Pozzobon
  • Muriel Nobles
  • Johannes Riegler
  • Xuebin Dong
  • Martina Piccoli
  • Angela Chiavegato
  • Anthony N. Price
  • Marco Ghionzoli
  • King K. Cheung
  • Anna Cabrelle
  • Paul R. O’Mahoney
  • Emanuele Cozzi
  • Saverio Sartore
  • Andrew Tinker
  • Mark F. Lythgoe
  • Paolo De Coppi
Article

Abstract

Cell therapy has developed as a complementary treatment for myocardial regeneration. While both autologous and allogeneic uses have been advocated, the ideal candidate has not been identified yet. Amniotic fluid-derived stem (AFS) cells are potentially a promising resource for cell therapy and tissue engineering of myocardial injuries. However, no information is available regarding their use in an allogeneic context. c-kit-sorted, GFP-positive rat AFS (GFP-rAFS) cells and neonatal rat cardiomyocytes (rCMs) were characterized by cytocentrifugation and flow cytometry for the expression of mesenchymal, embryonic and cell lineage-specific antigens. The activation of the myocardial gene program in GFP-rAFS cells was induced by co-culture with rCMs. The stem cell differentiation was evaluated using immunofluorescence, RT-PCR and single cell electrophysiology. The in vivo potential of Endorem-labeled GFP-rAFS cells for myocardial repair was studied by transplantation in the heart of animals with ischemia/reperfusion injury (I/R), monitored by magnetic resonance imaging (MRI). Three weeks after injection a small number of GFP-rAFS cells acquired an endothelial or smooth muscle phenotype and to a lesser extent CMs. Despite the low GFP-rAFS cells count in the heart, there was still an improvement of ejection fraction as measured by MRI. rAFS cells have the in vitro propensity to acquire a cardiomyogenic phenotype and to preserve cardiac function, even if their potential may be limited by poor survival in an allogeneic setting.

Keywords

Amniotic fluid Stem cells In vitro differentiation Cardiomyocyte Cell transplantation 

Notes

Acknowledgments

This work was supported by grant # 07/02 from “Città della Speranza”, Malo, Vicenza, Italy (SB, PDC) and by the Wellcome Trust (MN and AT). The authors also acknowledge the support of the Biotechnology and Biological Sciences Research Council, the British Heart Foundation and the Engineering and Physical Sciences Research Council.

Conflict of Interest and Disclosures

None to declare.

Supplementary material

Supplement Movie 1

GFP-rAFS cell with spontaneous contractile activity in co-culture with rCMs. After 4 days of co-culture, some GFP-rAFS cells were detected in CM-enriched beating areas expressing contractile activity as detected by the video recording. (MPG 583 kb)

12015_2010_9200_MOESM2_ESM.gif (7 kb)
Supplement Figure 1 Calibration curve for Endorem particles concentration mg/ml, [c] versus R2 (1/T2), demonstrating a linear relation between iron particles concentration and T2 (as long as the T2 values are between 20 and 90 seconds). (GIF 7.23 kb)
12015_2010_9200_MOESM3_ESM.jpg (2.1 mb)
Supplement Figure 2 Analysis of differentiation of GFP-rAFS cells by immunofluorescence and gene expression analysis after 6 and 9 days of indirect co-culture with rCMs with Transwell® Membrane Inserts and after treatment with rCMs-conditioned medium. (ac) GFP-rAFS cells after indirect co-culture with rCMs and (d–f) after rCMs-conditioned medium treatment for 9 days, showing no expression of CM-specific markers as cTnT, bar, 100 μm. (g) Gel electrophoresis of RT-PCR products of control untreated GFP-rAFS cells (control GFP-rAFS cells, lane 1), GFP-rAFS cells co-cultured with rCMs on Transwell® Membrane Inserts for 6 days (lane 2), GFP-rAFS cells treated with rCM-conditioned medium for 6 days (lane 3), GFP-rAFS cells co-cultured with rCMs on Transwell® Membrane Inserts for 9 days (lane 4), GFP-rAFS cells treated with rCM-conditioned medium for 9 days (lane 5), control rCMs (lane 6) and H2O (negative control, lane 7) for the expression of the housekeeping gene β-Actin and the cardiac genes troponin I (cTnI) and sarcomeric α-actinin (cαA). GFP-rAFS cells co-cultured with rCMs with inserts and treated with rCMs-conditioned medium did not show any expression of cardiomyocyte genes (lane 2–5) compared to control undifferentiated GFP-rAFS cells (lane 1). (JPEG 2.09 mb)

References

  1. 1.
    Gonzales, C., & Pedrazzini, T. (2009). Progenitor cell therapy for heart disease. Experimental Cell Research, 315(18), 3077–3085.CrossRefPubMedGoogle Scholar
  2. 2.
    Menasche, P. (2009). Cell-based therapy for heart disease: a clinically oriented perspective. Molecular Therapy, 17(5), 758–766.CrossRefPubMedGoogle Scholar
  3. 3.
    Shintani, Y., Fukushima, S., Varela-Carver, A., et al. (2009). Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47(2), 288–295.CrossRefPubMedGoogle Scholar
  4. 4.
    Reinecke, H., Minami, E., Zhu, W. Z., & Laflamme, M. A. (2008). Cardiogenic differentiation and transdifferentiation of progenitor cells. Circulation Research, 103(10), 1058–1071.CrossRefPubMedGoogle Scholar
  5. 5.
    Ausoni, S., & Sartore, S. (2009). From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. The Journal of Cell Biology, 184(3), 357–364.CrossRefPubMedGoogle Scholar
  6. 6.
    Oh, H., Chi, X., Bradfute, S. B., et al. (2004). Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Annals of the New York Academy of Sciences, 1015, 182–189.CrossRefPubMedGoogle Scholar
  7. 7.
    Mummery, C., Ward-van, O. D., Doevendans, P., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107(21), 2733–2740.CrossRefPubMedGoogle Scholar
  8. 8.
    DeCoppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25(1), 100–106.CrossRefGoogle Scholar
  9. 9.
    DeCoppi, P., Callegari, A., Chiavegato, A., et al. (2007). Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. Journal d'Urologie, 177(1), 369–376.CrossRefGoogle Scholar
  10. 10.
    Mauro, A., Turriani, M., Ioannoni, A., et al. (2010). Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Veterinary Research Communications, 34(Suppl 1), S25–S28.CrossRefPubMedGoogle Scholar
  11. 11.
    Gekas, J., Walther, G., Skuk, D., Bujold, E., Harvey, I., & Bertrand, O. F. (2010). In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage. Clinical and Experimental Medicine, 10(1), 1–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Fujimoto, K. L., Miki, T., Liu, L. J., et al. (2009). Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplantation, 18(4), 477–486.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I., & Nikaido, T. (2005). Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation, 79(5), 528–535.CrossRefPubMedGoogle Scholar
  14. 14.
    Okamoto, K., Miyoshi, S., Toyoda, M., et al. (2007). ‘Working’ cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Experimental Cell Research, 313(12), 2550–2562.CrossRefPubMedGoogle Scholar
  15. 15.
    Sartore, S., Lenzi, M., Angelini, A., et al. (2005). Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. European Journal of Cardiothoracic Surgery, 28(5), 677–684.CrossRefPubMedGoogle Scholar
  16. 16.
    Chiavegato, A., Bollini, S., Pozzobon, M., et al. (2007). Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 42(4), 746–759.CrossRefPubMedGoogle Scholar
  17. 17.
    Iop, L., Chiavegato, A., Callegari, A., et al. (2008). Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplantation, 17(6), 679–694.CrossRefPubMedGoogle Scholar
  18. 18.
    Guan, X., Delo, D. M., Atala, A., & Soker, S. (2010). In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med.Google Scholar
  19. 19.
    Yeh, Y. C., Lee, W. Y., Yu, C. L., et al. (2010). Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials, 31(25), 6444–6453.CrossRefPubMedGoogle Scholar
  20. 20.
    Li, C. D., Zhang, W. Y., Li, H. L., et al. (2005). Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Research, 15(7), 539–547.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang, C. J., Yen, M. L., Chen, Y. C., et al. (2006). Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells, 24(11), 2466–2477.CrossRefPubMedGoogle Scholar
  22. 22.
    Magatti, M., De, M. S., Vertua, E., Gibelli, L., Wengler, G. S., & Parolini, O. (2008). Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells, 26(1), 182–192.CrossRefPubMedGoogle Scholar
  23. 23.
    Banas, R. A., Trumpower, C., Bentlejewski, C., Marshall, V., Sing, G., & Zeevi, A. (2008). Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Human Immunology, 69(6), 321–328.CrossRefPubMedGoogle Scholar
  24. 24.
    Ditadi, A., DeCoppi, P., Picone, O., et al. (2009). Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood, 113(17), 3953–3960.CrossRefPubMedGoogle Scholar
  25. 25.
    Dobreva, M. P., Pereira, P. N., Deprest, J., & Zwijsen, A. (2010). On the origin of amniotic stem cells: of mice and men. The International Journal of Developmental Biology, 54(5), 761–777.CrossRefPubMedGoogle Scholar
  26. 26.
    Radisic, M., Park, H., Shing, H., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.CrossRefPubMedGoogle Scholar
  27. 27.
    Riegler, J., Wells, J. A., Kyrtatos, P. G., Price, A. N., Pankhurst, Q. A., & Lythgoe, M. F. (2010). Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials, 31(20), 5366–5371.CrossRefPubMedGoogle Scholar
  28. 28.
    Heiberg, E., Sjogren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Medical Imaging, 10, 1.CrossRefPubMedGoogle Scholar
  29. 29.
    Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.CrossRefPubMedGoogle Scholar
  30. 30.
    Miyamoto, S., Kawaguchi, N., Ellison, G. M., Matsuoka, R., Shin’oka, T., & Kurosawa, H. (2010). Characterization of long-term cultured c-kit + cardiac stem cells derived from adult rat hearts. Stem Cells and Development, 19(1), 105–116.CrossRefPubMedGoogle Scholar
  31. 31.
    Rogers, W. J., Meyer, C. H., & Kramer, C. M. (2006). Technology insight: in vivo cell tracking by use of MRI. Nature Clinical Practice. Cardiovascular Medicine, 3(10), 554–562.CrossRefPubMedGoogle Scholar
  32. 32.
    Weisskoff, R. M., Zuo, C. S., Boxerman, J. L., & Rosen, B. R. (1994). Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magnetic Resonance in Medicine, 31(6), 601–610.CrossRefPubMedGoogle Scholar
  33. 33.
    Stuckey, D. J., Carr, C. A., Martin-Rendon, E., et al. (2006). Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells, 24(8), 1968–1975.CrossRefPubMedGoogle Scholar
  34. 34.
    Kadner, A., Hoerstrup, S. P., Tracy, J., et al. (2002). Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. The Annals of Thoracic Surgery, 74(4), S1422–S1428.CrossRefPubMedGoogle Scholar
  35. 35.
    Schmidt, D., Breymann, C., Weber, A., et al. (2004). Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. The Annals of Thoracic Surgery, 78(6), 2094–2098.CrossRefPubMedGoogle Scholar
  36. 36.
    Yen, B. L., Huang, H. I., Chien, C. C., et al. (2005). Isolation of multipotent cells from human term placenta. Stem Cells, 23(1), 3–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Miao, Z., Jin, J., Chen, L., et al. (2006). Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30(9), 681–687.CrossRefPubMedGoogle Scholar
  38. 38.
    Chan, J., Kennea, N. L., & Fisk, N. M. (2007). Placental mesenchymal stem cells. American Journal of Obstetrics and Gynecology, 196(2), e18–e19.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, M., Yang, Y., Yang, D., et al. (2009). The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology, 126(2), 220–232.CrossRefPubMedGoogle Scholar
  40. 40.
    Kadner, A., Hoerstrup, S. P., Tracy, J., et al. (2002). Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. The Annals of Thoracic Surgery, 74(4), S1422–S1428.CrossRefPubMedGoogle Scholar
  41. 41.
    Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschlager, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18(7), 1489–1493.CrossRefPubMedGoogle Scholar
  42. 42.
    Perin, L., Sedrakyan, S., DaSacco, S., & DeFilippo, R. (2008). Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods in Cell Biology, 86, 85–99.CrossRefPubMedGoogle Scholar
  43. 43.
    Perin, L., Giuliani, S., Sedrakyan, S., DaSacco, S., & DeFilippo, R. E. (2008). Stem Cell and Regenerative Science Applications in the Development of Bioengineering of Renal Tissue. Pediatr Res.Google Scholar
  44. 44.
    Simantov, R. (2008). Amniotic stem cell international. Reproductive Biomedicine Online, 16(4), 597–598.CrossRefPubMedGoogle Scholar
  45. 45.
    Delo, D. M., Olson, J., Baptista, P. M., et al. (2008). Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells and Development, 17(6), 1185–1194.CrossRefPubMedGoogle Scholar
  46. 46.
    Sessarego, N., Parodi, A., Podesta, M., et al. (2008). Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica, 93(3), 339–346.CrossRefPubMedGoogle Scholar
  47. 47.
    Steigman, S. A., Armant, M., Bayer-Zwirello, L., et al. (2008). Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. Journal of Pediatric Surgery, 43(6), 1164–1169.CrossRefPubMedGoogle Scholar
  48. 48.
    Grisafi, D., Piccoli, M., Pozzobon, M., et al. (2008). High transduction efficiency of human amniotic fluid stem cells mediated by adenovirus vectors. Stem Cells and Development, 17(5), 953–962.CrossRefPubMedGoogle Scholar
  49. 49.
    Li, C., Zhou, J., Shi, G., et al. (2009). Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 18(22), 4340–4349.CrossRefPubMedGoogle Scholar
  50. 50.
    Ausoni, S., & Sartore, S. (2009). The cardiovascular unit as a dynamic player in disease and regeneration. Trends in Molecular Medicine, 15(12), 543–552.CrossRefPubMedGoogle Scholar
  51. 51.
    Rangappa, S., Entwistle, J. W., Wechsler, A. S., & Kresh, J. Y. (2003). Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. The Journal of Thoracic and Cardiovascular Surgery, 126(1), 124–132.CrossRefPubMedGoogle Scholar
  52. 52.
    Park, J., Setter, V., Wixler, V., & Schneider, H. (2009). Umbilical cord blood stem cells: induction of differentiation into mesenchymal lineages by cell-cell contacts with various mesenchymal cells. Tissue Engineering. Part A, 15(2), 397–406.CrossRefPubMedGoogle Scholar
  53. 53.
    Choi, Y. S., Dusting, G. J., Stubbs, S., et al. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14(4), 878–889.CrossRefPubMedGoogle Scholar
  54. 54.
    Iijima, Y., Nagai, T., Mizukami, M., et al. (2003). Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. The FASEB Journal, 17(10), 1361–1363.PubMedGoogle Scholar
  55. 55.
    Zhu, Y., Liu, T., Song, K., Ning, R., Ma, X., & Cui, Z. (2009). ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Molecular and Cellular Biochemistry, 324(1–2), 117–129.CrossRefPubMedGoogle Scholar
  56. 56.
    Ishikawa, F., Shimazu, H., Shultz, L. D., et al. (2006). Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. The FASEB Journal, 20(7), 950–952.CrossRefPubMedGoogle Scholar
  57. 57.
    Nygren, J. M., Jovinge, S., Breitbach, M., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Natural Medicines, 10(5), 494–501.CrossRefGoogle Scholar
  58. 58.
    Nassiri, S. M., Khaki, Z., Soleimani, M., et al. (2007). The similar effect of transplantation of marrow-derived mesenchymal stem cells with or without prior differentiation induction in experimental myocardial infarction. Journal of Biomedical Science, 14(6), 745–755.CrossRefPubMedGoogle Scholar
  59. 59.
    Mazo, M., Planat-Benard, V., Abizanda, G., et al. (2008). Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 10(5), 454–462.CrossRefPubMedGoogle Scholar
  60. 60.
    Yeh, Y. C., Wei, H. J., Lee, W. Y., et al. (2010). Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Engineering. Part A, 16(6), 1925–1936.CrossRefPubMedGoogle Scholar
  61. 61.
    Giebel, S., Dziaczkowska, J., Wojnar, J., et al. (2005). The impact of immunosuppressive therapy on an early quantitative NK cell reconstitution after allogeneic haematopoietic cell transplantation. Annals of Transplantation, 10(2), 29–33.PubMedGoogle Scholar
  62. 62.
    Nifontova, I., Svinareva, D., Petrova, T., & Drize, N. (2008). Sensitivity of mesenchymal stem cells and their progeny to medicines used for the treatment of hematoproliferative diseases. Acta Haematologica, 119(2), 98–103.CrossRefPubMedGoogle Scholar
  63. 63.
    Broekema, M., Harmsen, M. C., Koerts, J. A., et al. (2009). Ciclosporin does not influence bone marrow-derived cell differentiation to myofibroblasts early after renal ischemia/reperfusion. American Journal of Nephrology, 30(1), 73–83.CrossRefPubMedGoogle Scholar
  64. 64.
    Terrovitis, J., Stuber, M., Youssef, A., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117(12), 1555–1562.CrossRefPubMedGoogle Scholar
  65. 65.
    Eixarch, H., Gomez, A., Kadar, E., et al. (2009). Transgene expression levels determine the immunogenicity of transduced hematopoietic grafts in partially myeloablated mice. Molecular Therapy, 17(11), 1904–1909.CrossRefPubMedGoogle Scholar
  66. 66.
    Moloney, T. C., Dockery, P., Windebank, A. J., Barry, F. P., Howard, L., Dowd, E. (2010). Survival and Immunogenicity of Mesenchymal Stem Cells From the Green Fluorescent Protein Transgenic Rat in the Adult Rat Brain. Neurorehabil Neural Repair.Google Scholar
  67. 67.
    Delo, D. M., Guan, X., Wang, Z., et al. (2010). Calcification after myocardial infarction is independent of amniotic fluid stem cell injection. Cardiovasc Pathol.Google Scholar
  68. 68.
    Drukker, M., Katz, G., Urbach, A., et al. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9864–9869.CrossRefPubMedGoogle Scholar
  69. 69.
    Magliocca, J. F., Held, I. K., & Odorico, J. S. (2006). Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells and Development, 15(5), 707–717.CrossRefPubMedGoogle Scholar
  70. 70.
    Tian, L., Catt, J. W., O’Neill, C., & King, N. J. (1997). Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biology of Reproduction, 57(3), 561–568.CrossRefPubMedGoogle Scholar
  71. 71.
    Lampton, P. W., Crooker, R. J., Newmark, J. A., & Warner, C. M. (2008). Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens, 72(5), 448–457.CrossRefPubMedGoogle Scholar
  72. 72.
    Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19(6), 1450–1456.CrossRefPubMedGoogle Scholar
  73. 73.
    Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., et al. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology, 194(3), 664–673.CrossRefPubMedGoogle Scholar
  74. 74.
    Ilancheran, S., Moodley, Y., & Manuelpillai, U. (2009). Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta, 30(1), 2–10.CrossRefPubMedGoogle Scholar
  75. 75.
    Swijnenburg, R. J., Tanaka, M., Vogel, H., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172.PubMedGoogle Scholar
  76. 76.
    Dressel, R., Nolte, J., Elsner, L., et al. (2010). Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. The FASEB Journal, 24(7), 2164–2177.CrossRefPubMedGoogle Scholar
  77. 77.
    Dressel, R., Guan, K., Nolte, J., et al. (2009). Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biology Direct, 4, 31.CrossRefPubMedGoogle Scholar
  78. 78.
    Pozzobon, M., Ghionzoli, M., & DeCoppi, P. (2010). ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatric Surgery International, 26(1), 3–10.CrossRefPubMedGoogle Scholar
  79. 79.
    Cananzi, M., Atala, A., & DeCoppi, P. (2009). Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reproductive Biomedicine Online, 18(Suppl 1), 17–27.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sveva Bollini
    • 1
    • 2
  • Michela Pozzobon
    • 1
  • Muriel Nobles
    • 3
  • Johannes Riegler
    • 4
    • 5
  • Xuebin Dong
    • 4
  • Martina Piccoli
    • 1
  • Angela Chiavegato
    • 6
  • Anthony N. Price
    • 4
  • Marco Ghionzoli
    • 2
  • King K. Cheung
    • 4
  • Anna Cabrelle
    • 7
  • Paul R. O’Mahoney
    • 2
  • Emanuele Cozzi
    • 8
  • Saverio Sartore
    • 6
  • Andrew Tinker
    • 3
  • Mark F. Lythgoe
    • 4
  • Paolo De Coppi
    • 1
    • 2
  1. 1.Stem Cell Processing Laboratory—Fondazione Città della Speranza,Venetian Institute of Molecular Medicine (VIMM)University of PaduaPaduaItaly
  2. 2.Surgery Unit, Institute of Child Health and Great Ormond Street HospitalUniversity College LondonLondonUK
  3. 3.Department of Medicine, The Rayne Institute, British Heart FoundationUniversity College LondonLondonUK
  4. 4.Department of Medicine and Institute of Child Health, Centre for Advanced Biomedical ImagingUniversity College LondonLondonUK
  5. 5.Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX)University College LondonLondonUK
  6. 6.Stem Cell Unit and Department of Biological SciencesUniversity of PaduaPaduaItaly
  7. 7.Venetian Institute of Molecular Medicine (VIMM)University of PaduaPaduaItaly
  8. 8.Department of Medical and Surgical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations