Stem Cell Reviews and Reports

, Volume 7, Issue 2, pp 342–363 | Cite as

Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes

  • Rita Anzalone
  • Melania Lo Iacono
  • Tiziana Loria
  • Antonino Di Stefano
  • Pantaleo Giannuzzi
  • Felicia Farina
  • Giampiero La RoccaEmail author


Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton’s jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.


Mesenchymal stem cells Umbilical cord Wharton’s jelly Type 1 diabetes Beta cells Differentiation markers Pancreas development Inflammation Immune modulation Hypoimmunogenicity 



We thank Rosemary Allpress for her revision of the English language. This work was partly supported by University of Palermo grants (ex 60% 2007) to RA, FF, GLR. The authors acknowledge the support of the Foundation S. Maugeri (ricerca corrente).

Disclosure The authors declare no potential conflicts of interest.


  1. 1.
    Friedenstein, A. J., Gorskaya, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4, 267–274.PubMedGoogle Scholar
  2. 2.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.PubMedGoogle Scholar
  3. 3.
    Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy, 7, 393–395.PubMedGoogle Scholar
  4. 4.
    Secco, M., Moreira, Y. B., Zucconi, E., et al. (2009). Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Reviews and Reports, 5, 387–401.PubMedGoogle Scholar
  5. 5.
    Anzalone, R., Lo Iacono, M., Corrao, S., et al. (2010). New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development, 19, 423–438.PubMedGoogle Scholar
  6. 6.
    Hung, S. C., Chen, N. J., Hsieh, S. L., Ma, H. L., & Lo, W. H. (2002). Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 20, 249–258.PubMedGoogle Scholar
  7. 7.
    Delorme, B., Ringe, J., Gallay, N., et al. (2008). Specific plasma membrane protein phenotype of cultureamplified and native human bone marrow mesenchymal stem cells. Blood, 111, 2631–2635.PubMedGoogle Scholar
  8. 8.
    Reger, R. L., Tucker, A. H., & Wolfe, M. R. (2008). Differentiation and characterization of human MSCs. Methods in Molecular Biology, 449, 93–107.PubMedGoogle Scholar
  9. 9.
    Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11, 874–885.PubMedGoogle Scholar
  10. 10.
    Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.PubMedGoogle Scholar
  11. 11.
    Rao, M. S., & Mattson, M. P. (2001). Stem cells and aging: expanding the possibilities. Mechanisms of Ageing and Development, 122, 713–734.PubMedGoogle Scholar
  12. 12.
    Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like from umbilical cord. Stem Cells, 21, 105–110.PubMedGoogle Scholar
  13. 13.
    La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.PubMedGoogle Scholar
  14. 14.
    Majore, I., Moretti, P., Stahl, F., Hass, R., & Kasper, C. (2010). Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Reviews and Reports. doi: 10.1007/s12015-010-9165-y.Google Scholar
  15. 15.
    Fong, C. Y., Chak, L. L., Biswas, A., et al. (2010). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews and Reports. doi: 10.1007/s12015-010-9166-x.Google Scholar
  16. 16.
    La Rocca, G., Anzalone, R., & Farina, F. (2009). The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scandinavian Journal of Immunology, 70, 161–162.PubMedGoogle Scholar
  17. 17.
    Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.PubMedGoogle Scholar
  18. 18.
    Vija, L., Fargec, D., Gautier, J. F., et al. (2009). Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes & Metabolism, 35, 85–93.Google Scholar
  19. 19.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedGoogle Scholar
  20. 20.
    Li, D. S., Warnock, G. L., Tu, H. J., et al. (2009). Do immunotherapy and β cell replacement play a sinergistic role in the treatment of type 1 diabetes? Life Sciences, 85, 549–556.PubMedGoogle Scholar
  21. 21.
    Nichols, J., & Cooke, A. (2009). Overcoming self-destruction in pancreas. Current Opinion in Biotechnology, 20, 511–515.PubMedGoogle Scholar
  22. 22.
    Alma, J., Nauta, W., & Fibbe, E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.Google Scholar
  23. 23.
    Selmani, Z., Naji, A., Gaiffe, E., et al. (2009). HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation, 87(9 Suppl.), S62–S66.PubMedGoogle Scholar
  24. 24.
    Le Bouteiller, P. (2000). HLA-G in the human placenta: expression and potential functions. Biochemical Society Transactions, 28, 208–212.PubMedGoogle Scholar
  25. 25.
    Ren, G., Zhao, X., Zhang, L., et al. (2010). Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cella adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology, 184, 2321–2328.Google Scholar
  26. 26.
    Krampera, M., Glennie, S., Dyson, J., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.PubMedGoogle Scholar
  27. 27.
    Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumour growth in allogeneic animals. Blood, 102, 3837–3844.PubMedGoogle Scholar
  28. 28.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1818.PubMedGoogle Scholar
  29. 29.
    Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.PubMedGoogle Scholar
  30. 30.
    Németh, K., Leelahavanichkul, A., Yuen, P. S. T., et al. (2009). Bone marroew stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42–49.PubMedGoogle Scholar
  31. 31.
    Mei, S. H., Haitsma, J. J., Dos Santos, C. C., et al. (2010). Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine. doi: 10.1164/rccm.201001-0010OC.PubMedGoogle Scholar
  32. 32.
    Barbagallo, I., Tibullo, D., Di Rosa, M., et al. (2008). A cytoprotective role for the heme oxygenase-1/CO pathway during neural differentiation of human mesenchymal stem cells. Journal of Neuroscience Research, 86, 1927–1935.PubMedGoogle Scholar
  33. 33.
    Jiang, Y., Chen, L., Tang, Y., et al. (2010). HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: a MRI study. Basic Research in Cardiology, 105, 431–442.PubMedGoogle Scholar
  34. 34.
    Tu, Z., Li, Q., Bu, H., & Lin, F. (2010). Mesenchymal stem cells inhibit complement activation by secreting factor H. Stem Cells and Development. doi: 10.1089/scd.2009.0418.PubMedGoogle Scholar
  35. 35.
    Sato, K., Ozaki, K., Oh, I., et al. (2007). Nitric oxide plays a crucial role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.PubMedGoogle Scholar
  36. 36.
    Ren, G., Zhang, L., Zhao, X., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150.PubMedGoogle Scholar
  37. 37.
    Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cellular Immunology, 259, 150–156.PubMedGoogle Scholar
  38. 38.
    Troyer, D. L., & Weiss, M. L. (2007). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.PubMedGoogle Scholar
  39. 39.
    Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.PubMedGoogle Scholar
  40. 40.
    Götherstrom, C., West, A., Liden, J., Uzunel, M., Lahesmaa, R., & Le Blanc, K. (2005). Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica, 90, 1017–1026.PubMedGoogle Scholar
  41. 41.
    Selmani, Z., Naji, A., Zidi, I., Favier, B., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 26, 212–222.PubMedGoogle Scholar
  42. 42.
    Deans, R. J., & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28, 875–884.PubMedGoogle Scholar
  43. 43.
    Xu, W., Zhang, X., Qian, H., et al. (2004). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental Biology and Medicine, 229, 623–631.PubMedGoogle Scholar
  44. 44.
    Sheng, H., Wang, Y., Jin, Y., et al. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18, 846–857.PubMedGoogle Scholar
  45. 45.
    Xue, Q., Luan, X. Y., Gu, Y. Z., et al. (2010). The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells and Development, 19, 27–38.PubMedGoogle Scholar
  46. 46.
    Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation, 13, 1477–1486.PubMedGoogle Scholar
  47. 47.
    Guo, Z., Zheng, C., Chen, Z., et al. (2009). Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. European Journal of Immunology, 39, 2840–2849.PubMedGoogle Scholar
  48. 48.
    Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One, 5, e9016.PubMedGoogle Scholar
  49. 49.
    Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevaxis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.PubMedGoogle Scholar
  50. 50.
    Zanone, M. M., Favaro, E., Miceli, I., et al. (2010). Human mesenchymal stem cells modulate cellular immune responses to islet antigen glutamic acid decarboxylase in type 1 diabetes. Journal of Clinical Endocrinology and Metabolism, 95, 3788–3797.PubMedGoogle Scholar
  51. 51.
    Chen, K., Wang, D., Du, W. T., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135, 448–456.PubMedGoogle Scholar
  52. 52.
    Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolie in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.PubMedGoogle Scholar
  53. 53.
    Kadri, T., Lataillade, J. J., Doucet, C., et al. (2005). Proteomic study of galectin-1 expression in human mesenchymal stem cells. Stem Cells and Development, 14, 204–212.PubMedGoogle Scholar
  54. 54.
    Sioud, M., Mobergslien, A., Boudabous, A., & Fløisand, Y. (2010). Evidence for the involvement of galectin-3 in esenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 71, 267–274.PubMedGoogle Scholar
  55. 55.
    Griffin, M. D., Ritter, T., & Mahon, B. P. (2010). Immunological aspects of allogeneic mesenchymal stem cell therapies. Human Gene Therapy. doi: 10.1089/hum.2010.156.Google Scholar
  56. 56.
    Hunt, J. S., Petroff, M. G., McIntire, R. H., & Ober, C. (2005). HLA-G and immune tolerance in pregnancy. The FASEB Journal, 19, 681–693.PubMedGoogle Scholar
  57. 57.
    Corrao, S., Campanella, C., Anzalone, R., et al. (2010). Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sciences, 86, 145–152.PubMedGoogle Scholar
  58. 58.
    Anzalone, R., La Rocca, G., Di Stefano, A., et al. (2009). Role of endothelial cell stress in the pathogenesis of chronic heart failure. Frontiers in Bioscience, 14, 2238–2247.PubMedGoogle Scholar
  59. 59.
    La Rocca, G., Di Stefano, A., Eleuteri, E., et al. (2009). Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Research in Cardiology, 104, 307–320.PubMedGoogle Scholar
  60. 60.
    Eleuteri, E., Magno, F., Gnemmi, I., et al. (2009). Role of oxidative and nitro sative stress biomarkers in chronic heart failure. Frontiers in Biosciences, 14, 2230–2237.Google Scholar
  61. 61.
    Eleuteri, E., Di Stefano, A., Ricciardolo, F. L., et al. (2009). Increased nitrotyrosine plasma levels in relation to systemic markers of inflammation and myeloperoxidase in chronic heart failure. International Journal of Cardiology, 135, 386–390.PubMedGoogle Scholar
  62. 62.
    Dìaz-Lagares, A., Alegre, E., LeMaoult, J., Carosella, E. D., & Gonzalez, A. (2009). Nitric oxide produces HLA-G nitration and induces metalloprotease-dependent shedding creating a tolerogenic milieu. Immunology, 126, 436–445.PubMedGoogle Scholar
  63. 63.
    Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis & Rheumatism, 60, 1006–1019.Google Scholar
  64. 64.
    Madec, A. M., Mallone, G., Alfonso, E., et al. (2009). Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 52, 1391–1399.PubMedGoogle Scholar
  65. 65.
    Zhao, Y., Lin, B., Darflinger, R., Zhang, Y., Holterman, M. J., & Skidgel, R. A. (2009). Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PloS ONE, 4, e4226.PubMedGoogle Scholar
  66. 66.
    Sundin, M., Ringdén, O., Sundberg, B., Nava, S., Götherström, C., & Le Blanc, K. (2007). No alloantibodies against mesenchymal stem cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica, 92, 1208–1215.PubMedGoogle Scholar
  67. 67.
    Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitski, V. (2007). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82, 887–893.PubMedGoogle Scholar
  68. 68.
    Morandi, F., Raffaghello, L., Bianchi, G., et al. (2008). Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells, 26, 1275–1287.PubMedGoogle Scholar
  69. 69.
    Shabbir, A., Zisa, D., Leiker, M., Johnston, C., Lin, H., & Lee, T. (2009). Muscular dystrophy therapy by non-autologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation, 87, 1275–1282.PubMedGoogle Scholar
  70. 70.
    Quevedo, H. C., Hatzistergos, K., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomiopathy via trilineage differentiating capacity. PNAS USA, 106, 14022–14027.PubMedGoogle Scholar
  71. 71.
    Chen, L., Tredget, E. E., Liu, C., & Wu, Y. (2009). Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PloS ONE, 4, e7119.PubMedGoogle Scholar
  72. 72.
    Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.PubMedGoogle Scholar
  73. 73.
    Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G. A., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108, 2114–2120.PubMedGoogle Scholar
  74. 74.
    Prigozhina, T. B., Khitrin, S., Elkin, G., Eizik, O., Morecki, S., & Slavin, S. (2008). Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Experimental Hematology, 36, 1370–1376.PubMedGoogle Scholar
  75. 75.
    Chiavegato, A., Bollini, S., Pozzobon, M., et al. (2007). Human amniotic Xuid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immunosuppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 42, 746–759.PubMedGoogle Scholar
  76. 76.
    Ren, G., Su, J., Zhang, L., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27, 1954–1962.PubMedGoogle Scholar
  77. 77.
    Sudres, M., Norol, F., Trenado, A., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176, 7761–7767.Google Scholar
  78. 78.
    Iyer, S. S., & Rojas, M. (2008). Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opinion in Biological Therapy, 8, 569–581.Google Scholar
  79. 79.
    Ringdén, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81, 1390–1397.PubMedGoogle Scholar
  80. 80.
    Zhang, X., Jiao, C., & Zhao, S. (2009). Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Reviews and Reports, 5, 402–409.PubMedGoogle Scholar
  81. 81.
    Ito, T., Itakura, S., Rawson, J., et al. (2010). Mesenchymal stem cell and islet co-transplantation promotes graft revascularizatioon and function. Transplantation, 89, 1438–1445.PubMedGoogle Scholar
  82. 82.
    Li, F. R., Wang, X. G., Deng, C. Y., Qi, H., Reb, L. L., & Zhou, H. X. (2010). Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clinical and Experimental Immunology, 161, 357–363.PubMedGoogle Scholar
  83. 83.
    Longoni, B., Szilagyi, E., Quaranta, P., et al. (2010). Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technology and Therapy, 12, 435–446.Google Scholar
  84. 84.
    Hoogduijn, M. J., Popp, F., Verbeek, R., et al. (2010). The immunotherapy properties of mesenchymal stem cells and their use for immunotherapy. International Immunopharmacology. doi: 10.1016/j.intimp.2010.06.019.PubMedGoogle Scholar
  85. 85.
    Popp, F. C., Eggenhofer, E., Renner, P., et al. (2008). Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant Immunology, 20, 55–60.PubMedGoogle Scholar
  86. 86.
    Ge, W., Jiang, J., Baroja, M. L., et al. (2009). Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. American Journal of Transplantation, 9, 1760–1772.PubMedGoogle Scholar
  87. 87.
    Le Blanc, K., Tammik, C., Rosendahl, K., Zettenberg, E., & Ringdén, O. (2003). HLA expression and immunogenic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.PubMedGoogle Scholar
  88. 88.
    Liu, H., Kemeny, D. M., Heng, B. C., Ouyang, H. W., Melendez, A. J., & Cao, T. (2006). The immunogenic and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. The Journal of Immunology, 176, 2864–2871.PubMedGoogle Scholar
  89. 89.
    Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47, 22–30.PubMedGoogle Scholar
  90. 90.
    Chen, X., McClurg, A., Zhou, G. Q., McCaigue, M., Armstrong, M. A., & Li, G. (2007). Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules. Stem Cells, 25, 364–370.PubMedGoogle Scholar
  91. 91.
    Pittenger, M. (2009). Sleuthing the source of regeneration by MSCs. Cell Stem Cell, 5, 8–10.Google Scholar
  92. 92.
    Kemp, K., Gray, E., Mallam, E., Scolding, N., & Wilkins, A. (2010). Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Reviews and Reports. doi: 10.1007/s12015-010-9178-6.PubMedGoogle Scholar
  93. 93.
    Liao, W., Zhong, J., Yu, J., et al. (2009). Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrage rat: implication for anti-inflammation and angiogenesis. Cellular Physiology and Biochemistry., 24, 307–316.PubMedGoogle Scholar
  94. 94.
    Carreras, A., Almendros, I., Montserrat, J. M., Navajas, D., & Farré, R. (2010). Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respiratory Physiology & Neurobiology, 172, 210–212.Google Scholar
  95. 95.
    Cao, H., Quian, H., Xu, W., et al. (2010). Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnology Letters, 32, 725–732.PubMedGoogle Scholar
  96. 96.
    Tsai, P. C., Fu, T. W., Chen, Y. M. A., et al. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15, 484–495.Google Scholar
  97. 97.
    Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136, 978–989.PubMedGoogle Scholar
  98. 98.
    Bonfield, T. L., Koloze, M. F., Lennon, D. P., Zuchowski, B., Yang, S. E., & Caplan, A. L. (2010). Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology Lung Cellular and Molecular Physiology. doi: 10.1152/ajplung.00182.2009.PubMedGoogle Scholar
  99. 99.
    Ishikane, S., Yamahara, K., Sada, M., et al. (2010). Allogeneic administration of fetal membrane-derived mesenchymal stem cells attenuates acute myocarditis in rats. Journal of Molecular and Cellular Cardiology. doi: 10.1016/j.yjmcc.2010.07.019.PubMedGoogle Scholar
  100. 100.
    Kim, Y. S., Park, H. J., Hong, M. H., et al. (2009). TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Frontiers in Bioscience, 14, 2845–2856.PubMedGoogle Scholar
  101. 101.
    Ende, N., Chen, R., & Reddi, A. S. (2004). Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochemical and Biophysical Research Communications, 325, 665–669.PubMedGoogle Scholar
  102. 102.
    Wehling, N., Palmer, G. D., Pilapil, C., et al. (2009). Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB-dependent pathways. Arthritis & Rheumatism, 60, 801–812.Google Scholar
  103. 103.
    Weir, G. C., & Bonner-Weir, S. (2010). Dreams for type 1 diabetes: shutting off autoimmunity and stimulating beta-cell regeneration. Endocrinology, 151, 2971–2973.PubMedGoogle Scholar
  104. 104.
    Dor, Y., & Stanger, B. Z. (2007). Regeneration in liver and pancreas: time to cut the umbilical cord? Science STKE, 414, pe66.Google Scholar
  105. 105.
    Eberhard, D., Lammert, E. (2009). The pancreatic β-cell in the islet and organ community. Current Opinion in Genetics & Development, 19, 469–475.Google Scholar
  106. 106.
    Sun, B., Roh, K. H., Lee, S. R., Lee, Y. S., Kang, K. S. (2007). Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet- like structure. Biochemical and Biophysical Research Communications, 354, 919–923.Google Scholar
  107. 107.
    Wu, L. F., Wang, N. N., Liu, Y. S., Wei, X. (2009). Differentiation of Wharton’s Jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A, 15, 2865–2873.Google Scholar
  108. 108.
    MacDonald, M. R., Petrie, M. C., Hawkins, N. M., et al. (2008). Diabetes, left ventricular systolic dysfunction, and chronic heart failure. European Heart Journal, 29, 1224–1240.Google Scholar
  109. 109.
    Scrutinio, D., Giannuzzi, P. (2008). Comorbidity in patients undergoing coronary artery bypass graft surgery: impact on outcome and implications for cardiac rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation, 15, 379–385.Google Scholar
  110. 110.
    Palma, C. A., Lindeman, R., Tuch, B. E. (2008). Blood into β-cells: can adult stem cells be used as a therapy for type 1 diabetes? Regenerative Medicine, 3, 1–15.Google Scholar
  111. 111.
    Sahu, S., Tosh, D., Hardikar, A. A. (2009). New sources of β-cells for treating diabetes. Journal of Endocrinology, 202, 13–16.Google Scholar
  112. 112.
    Aguayo-Mazzuccato, C., & Bonner-Weir, S. (2010). Stem cell therapy for type 1 diabetes mellitus. Nature Reviews Endocrinology, 6, 139–148.Google Scholar
  113. 113.
    Fadini, G. P., Sartore, S., Schiavon, M., et al. (2006). Diabetes impairs progenitor cell mobilization after hindlimb hischaemia-reperfusion injury in rats. Diabetologia, 49, 3075–3084.PubMedGoogle Scholar
  114. 114.
    Gallagher, K. A., Liu, Z. J., Xiao, M., et al. (2007). Diabetic impaiorments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. Journal of Clinical Investigation, 117, 1249–1259.PubMedGoogle Scholar
  115. 115.
    McKnight, K. D., & Kim, S. K. (2010). Deconstructing pancreas development to reconstruct human islets from pluripotent stem cells. Cell Stem Cell, 6, 300–308.PubMedGoogle Scholar
  116. 116.
    Puri, S., & Hebrok, M. (2010). Cellular plasticity within the pancreas—lessons learned from development. Developmental Cell, 18, 342–356.PubMedGoogle Scholar
  117. 117.
    Guney, M. A., & Gannon, M. (2009). Pancreas cell fate. Birth Defects Research (Part C), 87, 232–248.Google Scholar
  118. 118.
    McDonald, E., Krishnamurthy, M., Goodyer, C. G., & Wang, R. (2009). The emerging roles of SOX transcription factors in pancreatic endocrine cell development and function. Stem Cells and Development, 18, 1379–1387.PubMedGoogle Scholar
  119. 119.
    Shao, S., Fang, Z., Yu, X., & Zhang, M. (2009). Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells. Biochemical and Biophysical Research Communications, 384, 401–404.PubMedGoogle Scholar
  120. 120.
    Burlison, J. S., Long, Q., Fujitani, Y., et al. (2008). Pdx-1 and Ptf1a concurrently determine the fate specification of pancreatic multipotent progenitor cells. Developmental Biology, 316, 74–86.PubMedGoogle Scholar
  121. 121.
    Kawaguchi, Y., Cooper, B., Gannon, M., et al. (2002). The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature Genetics, 32, 128–134.PubMedGoogle Scholar
  122. 122.
    Sellick, G. S., Barker, K. T., Stolte-Dijkstra, I., et al. (2004). Mutations in Ptf1a cause pancreatic and cerebellar agenesis. Nature Genetics, 36, 1301–1305.PubMedGoogle Scholar
  123. 123.
    Gradwohl, G., Dierich, A., LeMeur, M., & Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proceedings of the National Academy of Sciences USA, 97, 1607–1611.Google Scholar
  124. 124.
    Sussel, L., Kalamaras, J., Hartingan-O’Connor, D. J., et al. (1998). Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 125, 2213–2221.PubMedGoogle Scholar
  125. 125.
    Servitja, J. M., & Ferrer, J. (2004). Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia, 47, 597–613.PubMedGoogle Scholar
  126. 126.
    Sulzbacher, S., Schroeder, I. S., Truong, T. T., & Wobus, A. M. (2009). Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Reviews, 5, 159–173.PubMedGoogle Scholar
  127. 127.
    Soria, B., Roche, E., Berna, G., et al. (2000). Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49, 157–162.PubMedGoogle Scholar
  128. 128.
    Lumelsky, N., Blondel, O., Laeng, P., et al. (2001). Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets. Science, 292, 1389–1394.PubMedGoogle Scholar
  129. 129.
    Sipione, S., Eshpeter, A., Lyon, J. G., Korbutt, G. S., & Bleackley, R. C. (2004). Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia, 47, 499–508.PubMedGoogle Scholar
  130. 130.
    Furth, M. E., & Atala, A. (2009). Stem cell sources to treat diabetes. Journal of Cellular Biochemistry, 106, 507–511.PubMedGoogle Scholar
  131. 131.
    Rolletscheck, A., Kania, G., & Wobus, A. M. (2006). Generation of pancreatic insulin-producing cells from embryonic stem cells—“proof of principle”, but questions still unanswered. Diabetologia, 49, 2541–2545.Google Scholar
  132. 132.
    Chakrabarti, S. K., & Mirminra, R. G. (2003). Transcription factors direct the development and function of pancreatic β-cells. Trends in Endocrinology and Metabolism, 14, 78–84.PubMedGoogle Scholar
  133. 133.
    Chen, L. B., Jiang, X. B., & Yang, L. (2004). Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World Journal of Gastroenterology, 10, 3016–3020.PubMedGoogle Scholar
  134. 134.
    Wu, X. H., Liu, C. P., Xu, K. F., et al. (2007). Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World Journal of Gastroenterology, 13, 3342–3349.PubMedGoogle Scholar
  135. 135.
    Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., & Petersen, B. E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for treatment of type I diabetes. Laboratory Investigation, 84, 607–617.PubMedGoogle Scholar
  136. 136.
    Paz, A. H., Salton, G. D., Ayala-Lugo, A., et al. (2010). Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozocin-induced hyperglycemia in rats. Stem Cells and Development. doi: 10.1089/scd.2009.0490.PubMedGoogle Scholar
  137. 137.
    Moriscot, C., De Fraipont, F., Richard, M. J., et al. (2005). Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells, 23, 594–604.PubMedGoogle Scholar
  138. 138.
    Li, Y., Zhang, R., Qiao, H., et al. (2007). Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. Journal of Cellular Physiology, 211, 36–44.PubMedGoogle Scholar
  139. 139.
    Lee, R. H., Seo, M. J., Reger, R. L., et al. (2006). Multipotent stromal from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences USA, 103, 17438–17443.Google Scholar
  140. 140.
    Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 120, 771–776.PubMedGoogle Scholar
  141. 141.
    Karnieli, O., Izhar-Prato, Y., Bulvik, S., & Efrat, S. (2007). Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 25, 2837–2844.PubMedGoogle Scholar
  142. 142.
    Xie, Q. P., Huang, H., Xu, B., et al. (2009). Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation, 77, 483–491.PubMedGoogle Scholar
  143. 143.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.PubMedGoogle Scholar
  144. 144.
    Timper, K., Seboek, D., Eberhardt, M., et al. (2006). Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical and Biophysical Research Communications, 341, 1135–1140.PubMedGoogle Scholar
  145. 145.
    Trivedi, H. L., Vanikar, A. V., Thakker, A., et al. (2008). Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantatio synthesize insulin. Transplantation Proceedings, 40, 1135–1139.PubMedGoogle Scholar
  146. 146.
    Pessina, A., Eletti, B., Croera, C., Savalli, N., Diodovich, C., & Gribaldo, L. (2004). Pancreas developing markers expressed on human mononuleated umbilical cord blood cells. Biochemical and Biophysical Research Communications, 323, 315–322.PubMedGoogle Scholar
  147. 147.
    Soria, B. (2001). In vitro differentiation of pancreatic beta-cells. Differentiation, 68, 205–219.PubMedGoogle Scholar
  148. 148.
    Ende, N., Chen, R., & Redid, A. S. (2004). Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochemical and Biophysical Research Communications, 321, 168–171.PubMedGoogle Scholar
  149. 149.
    Yoshida, S., Ishikawa, F., Kawano, N., et al. (2005). Human cord blood derived cells generate insulin producing cells in vivo. Stem Cells, 23, 1409–1416.PubMedGoogle Scholar
  150. 150.
    Denner, L., Bodenburg, Y., Zhao, J. G., et al. (2007). Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cellular Proliferation, 40, 367–380.Google Scholar
  151. 151.
    Gao, F., Wu, D. Q., Hu, Y. H., et al. (2008). In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Translational Research, 151, 293–302.PubMedGoogle Scholar
  152. 152.
    Parekh, V. S., Joglekar, M. V., & Hardikar, A. A. (2009). Differentiation of human umbilical cord blood derived mononuclear cells to endocrine pancreatic lineage. Differentiation, 78, 232–240.PubMedGoogle Scholar
  153. 153.
    Sun, N. Z., & Ji, H. S. (2009). In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. The Journal of International Medical Research, 37, 400–406.PubMedGoogle Scholar
  154. 154.
    Parolini, O., Alviano, F., Bagnara, G. P., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 26, 300–311.PubMedGoogle Scholar
  155. 155.
    Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived mesenchymal stem cells in Wharton’s jelly of the human Umbilical Cord for transplantation to control type 1 diabetes. PLoS ONE, 3, e1451.PubMedGoogle Scholar
  156. 156.
    Palmer, J. P. (2009). C-peptide in the natural history of type 1 diabetes. Diabetes/Metabolism Research and Reviews, 25, 325–328.PubMedGoogle Scholar
  157. 157.
    Wu, L. F., Wang, N. N., Liu, Y. S., & Wei, X. (2009). Differentiation of Wharton’s Jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A, 15, 2865–2873.PubMedGoogle Scholar
  158. 158.
    Wang, H. S., Shyu, J. F., Shen, W. S., et al. (2010). Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplantation. doi: 10.3727/096368910X522270.Google Scholar
  159. 159.
    Kaneto, H., Matsuoka, T., Kawashima, S., et al. (2009). Role of MafA in pancreatic β-cells. Advanced Drug Delivery Reviews, 61, 489–496.Google Scholar
  160. 160.
    Faustman, D. L., & Davis, M. (2009). The primacy of CD8 T lymphocytes in type 1 diabetes and implications for therapies. Journal of Molecular Medicine, 87, 1173–1178.PubMedGoogle Scholar
  161. 161.
    Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759–1767.PubMedGoogle Scholar
  162. 162.
    Eizirik, D. L., Colli, M. L., & Ortiz, F. (2009). The role of inflammation in insulitis and β‑cell loss in type 1 diabetes. Nature Reviews Endocrinology, 5, 219–226.PubMedGoogle Scholar
  163. 163.
    Brennand, K., & Melton, D. (2009). Slow and steady is the key to β-cell replication. Journal of Cellular and Molecular Medicine, 13, 472–487.PubMedGoogle Scholar
  164. 164.
    Granger, A., & Kushner, J. A. (2009). Cellular origins of b-cell regeneration: a legacy view of historical controversies. Journal of Internal Medicine, 266, 325–338.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rita Anzalone
    • 1
  • Melania Lo Iacono
    • 1
  • Tiziana Loria
    • 1
  • Antonino Di Stefano
    • 2
  • Pantaleo Giannuzzi
    • 2
  • Felicia Farina
    • 1
  • Giampiero La Rocca
    • 1
    Email author
  1. 1.Sezione di Anatomia Umana, Dipartimento di Biomedicina Sperimentale e Neuroscienze ClinicheUniversità degli Studi di PalermoPalermoItaly
  2. 2.Laboratorio di Citoimmunopatologia apparato cardio Respiratorio e Divisione di CardiologiaFondazione S. Maugeri, IRCCS, Istituto Scientifico di Veruno (NO)VerunoItaly

Personalised recommendations