Advertisement

Stem Cell Reviews and Reports

, Volume 7, Issue 2, pp 434–445 | Cite as

Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases

  • Yiming Huang
  • Volker Enzmann
  • Suzanne T. Ildstad
Article

Abstract

Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.

Keywords

Retinal degeneration Stem cells Regeneration 

Abbreviation

ABCR

ATP-binding cassette retina

AMD

Age-related macular degeneration

BMC

Bone marrow cells

CNV

Choroidal neovascularization

ESC

Embryonic stem cells

FL

flt3 ligand

G-CSF

Granulocyte colony stimulating factor

IPE

Iris pigment epithelium

iPS

Induced pluripotent stem cells

LCA

Leber congenital amaurosis

MSC

Mesenchymal stem cells

RD

Retinal degeneration

RP

Retinitis pigmentosa

RPC

Retinal progenitor cells

RPE

Retinal pigment epithelium

SC

Stem cells

VSEL

Very small embryonic-like stem cells

Notes

Acknowledgments

The authors thank Haval Shirwan, Larry Bozulic, and Deborah Ramsey for review of the manuscript and helpful comments; Carolyn DeLautre for manuscript preparation. This work was supported in part by the following: NIH R01 DK069766. This publication was also made possible by the Commonwealth of Kentucky Research Challenge Trust Fund; the W. M. Keck Foundation; The Jewish Hospital Foundation; and the Swiss National Science Foundation.

Disclosures

S. Ildstad has significant equity interest in Regenerex, LLC, a start-up biotech company based on the facilitating cell technology.

References

  1. 1.
    MacLaren, R. E., Pearson, R. A., MacNeil, A., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.PubMedCrossRefGoogle Scholar
  2. 2.
    Lamba, D. A., Gust, J., & Reh, T. A. (2009). Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell, 4(1), 73–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Lamba, D. A., Karl, M. O., Ware, C. B., et al. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Science USA, 103(34), 12769–12774.CrossRefGoogle Scholar
  4. 4.
    Meyer, J. S., Shearer, R. L., Capowski, E. E., et al. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Science USA, 106(39), 16698–16703.CrossRefGoogle Scholar
  5. 5.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  6. 6.
    Kicic, A., Shen, W. Y., Wilson, A. S., et al. (2003). Differentiation of marrow stromal cells into photoreceptors in the rat eye. Journal of Neuroscience, 23(21), 7742–7749.PubMedGoogle Scholar
  7. 7.
    Liu, Y., Gao, L., Zuba-Surma, E. K., et al. (2009). Identification of small Sca-1(+), Lin(-), CD45(-) multipotential cells in the neonatal murine retina. Experimental Hematology, 37(9), 1096–107–1107.CrossRefGoogle Scholar
  8. 8.
    Gehrs, K. M., Anderson, D. H., Johnson, L. V., et al. (2006). Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Annals of Medicine, 38(7), 450–471.PubMedCrossRefGoogle Scholar
  9. 9.
    Boughman, J. A., Conneally, P. M., & Nance, W. E. (1980). Population genetic studies of retinitis pigmentosa. American Journal of Human Genetics, 32(2), 223–235.PubMedGoogle Scholar
  10. 10.
    Berson, E. L. (1993). Retinitis pigmentosa. The Friedenwald Lecture. Investigative Ophthalmology and Visual Science, 34(5), 1659–1676.PubMedGoogle Scholar
  11. 11.
    Gaillard, F., & Sauve, Y. (2007). Cell-based therapy for retina degeneration: the promise of a cure. Vision Research, 47(22), 2815–2824.PubMedCrossRefGoogle Scholar
  12. 12.
    Bressler, N. M., Bressler, S. B., & Fine, S. L. (1988). Age-related macular degeneration. Survey of Ophthalmology, 32(6), 375–413.PubMedCrossRefGoogle Scholar
  13. 13.
    Mitchell, P., Korobelnik, J. F., Lanzetta, P., et al. (2009). Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. British Journal of Ophthalmology, 94(1), 2–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Shintani, K., Shechtman, D. L., & Gurwood, A. S. (2009). Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry, 80(7), 384–401.PubMedGoogle Scholar
  15. 15.
    Hamel, C. (2006). Retinitis pigmentosa. Orphanet Journal of Rare Diseases, 1, 40.PubMedCrossRefGoogle Scholar
  16. 16.
    Westerfeld, C., & Mukai, S. (2008). Stargardt’s disease and the ABCR gene. Seminars in Ophthalmology, 23(1), 59–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Dharmaraj, S. R., Silva, E. R., Pina, A. L., et al. (2000). Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genetics, 21(3), 135–150.PubMedGoogle Scholar
  18. 18.
    Brownstein, Z., Ben-Yosef, T., Dagan, O., et al. (2004). The R245X mutation of PCDH15 in Ashkenazi Jewish children diagnosed with nonsyndromic hearing loss foreshadows retinitis pigmentosa. Pediatric Research, 55(6), 995–1000.PubMedCrossRefGoogle Scholar
  19. 19.
    Reh, T. A. (2006). Neurobiology: right timing for retina repair. Nature, 444(7116), 156–157.PubMedCrossRefGoogle Scholar
  20. 20.
    Anchan, R. M., Reh, T. A., Angello, J., et al. (1991). EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron, 6(6), 923–936.PubMedCrossRefGoogle Scholar
  21. 21.
    Reh, T. A., & Levine, E. M. (1998). Multipotential stem cells and progenitors in the vertebrate retina. Journal of Neurobiology, 36(2), 206–220.PubMedCrossRefGoogle Scholar
  22. 22.
    Tropepe, V., Coles, B. L., Chiasson, B. J., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287(5460), 2032–2036.PubMedCrossRefGoogle Scholar
  23. 23.
    Qiu, G., Seiler, M. J., Mui, C., et al. (2005). Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Experimental Eye Research, 80(4), 515–525.PubMedCrossRefGoogle Scholar
  24. 24.
    Coles, B. L., Angenieux, B., Inoue, T., et al. (2004). Facile isolation and the characterization of human retinal stem cells. Proceedings of the National Academy of Science USA, 101(44), 15772–15777.CrossRefGoogle Scholar
  25. 25.
    Klassen, H. J., Ng, T. F., Kurimoto, Y., et al. (2004). Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Investigative Ophthalmology and Visual Science, 45(11), 4167–4173.PubMedCrossRefGoogle Scholar
  26. 26.
    Chacko, D. M., Rogers, J. A., Turner, J. E., et al. (2000). Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochemical and Biophysical Research Communications, 268(3), 842–846.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  28. 28.
    Reubinoff, B. E., Pera, M. F., Fong, C. Y., et al. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.PubMedCrossRefGoogle Scholar
  29. 29.
    Cowan, C. A., Klimanskaya, I., McMahon, J., et al. (2004). Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 350(13), 1353–1356.PubMedCrossRefGoogle Scholar
  30. 30.
    Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140.PubMedCrossRefGoogle Scholar
  31. 31.
    Schuldiner, M., Eiges, R., Eden, A., et al. (2001). Induced neuronal differentiation of human embryonic stem cells. Brain Research, 913(2), 201–205.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang, S. C., Wernig, M., Duncan, I. D., et al. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19(12), 1129–1133.PubMedCrossRefGoogle Scholar
  33. 33.
    Martinat, C., Bacci, J. J., Leete, T., et al. (2006). Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proceedings of the National Academy of Science USA, 103(8), 2874–2879.CrossRefGoogle Scholar
  34. 34.
    Yan, Y., Yang, D., Zarnowska, E. D., et al. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6), 781–790.PubMedCrossRefGoogle Scholar
  35. 35.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang, L., Soonpaa, M. H., Adler, E. D., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.PubMedCrossRefGoogle Scholar
  37. 37.
    Shirahashi, H., Wu, J., Yamamoto, N., et al. (2004). Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplantation, 13(3), 197–211.PubMedCrossRefGoogle Scholar
  38. 38.
    Samadikuchaksaraei, A., Cohen, S., Isaac, K., et al. (2006). Derivation of distal airway epithelium from human embryonic stem cells. Tissue Engineering, 12(4), 867–875.PubMedCrossRefGoogle Scholar
  39. 39.
    Soria, B., Roche, E., Berna, G., et al. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49(2), 157–162.PubMedCrossRefGoogle Scholar
  40. 40.
    Assady, S., Maor, G., Amit, M., et al. (2001). Insulin production by human embryonic stem cells. Diabetes, 50(8), 1691–1697.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhao, X., Liu, J., & Ahmad, I. (2002). Differentiation of embryonic stem cells into retinal neurons. Biochemical and Biophysical Research Comunications, 297(2), 177–184.CrossRefGoogle Scholar
  42. 42.
    Zhao, X., Liu, J., & Ahmad, I. (2006). Differentiation of embryonic stem cells to retinal cells in vitro. Methods in Molecular Biology, 330, 401–416.PubMedGoogle Scholar
  43. 43.
    Ikeda, H., Osakada, F., Watanabe, K., et al. (2005). Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proceedings of the National Academy of Science USA, 102(32), 11331–11336.CrossRefGoogle Scholar
  44. 44.
    Vugler, A., Carr, A. J., Lawrence, J., et al. (2008). Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Experimental Neurology, 214(2), 347–361.PubMedCrossRefGoogle Scholar
  45. 45.
    Klimanskaya, I., Hipp, J., Rezai, K. A., et al. (2004). Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning and Stem Cells, 6(3), 217–245.PubMedGoogle Scholar
  46. 46.
    Osakada, F., Ikeda, H., Mandai, M., et al. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology, 26(2), 215–224.PubMedCrossRefGoogle Scholar
  47. 47.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  48. 48.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedCrossRefGoogle Scholar
  50. 50.
    Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.PubMedCrossRefGoogle Scholar
  51. 51.
    Kyba, M., Perlingeiro, R. C., & Daley, G. Q. (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1), 29–37.PubMedCrossRefGoogle Scholar
  52. 52.
    Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.PubMedCrossRefGoogle Scholar
  53. 53.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.PubMedCrossRefGoogle Scholar
  54. 54.
    Wernig, M., Zhao, J. P., Pruszak, J., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Science USA, 105(15), 5856–5861.CrossRefGoogle Scholar
  55. 55.
    Puzio-Kuter, A. M., & Levine, A. J. (2009). Stem cell biology meets p53. Nature Biotechnology, 27(10), 914–915.PubMedCrossRefGoogle Scholar
  56. 56.
    Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.PubMedGoogle Scholar
  57. 57.
    Campagnoli, C., Roberts, I. A., Kumar, S., et al. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396–2402.PubMedCrossRefGoogle Scholar
  58. 58.
    In 't Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee, O. K., Kuo, T. K., Chen, W. M., et al. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103(5), 1669–1675.PubMedCrossRefGoogle Scholar
  60. 60.
    Bianco, P., & Robey, P. G. (2001). Stem cells in tissue engineering. Nature, 414(6859), 118–121.PubMedCrossRefGoogle Scholar
  61. 61.
    Bianco, P., Riminucci, M., Gronthos, S., et al. (2001). Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 19(3), 180–192.PubMedCrossRefGoogle Scholar
  62. 62.
    Abdallah, B. M., & Kassem, M. (2008). Human mesenchymal stem cells: from basic biology to clinical applications. Gene Therapy, 15(2), 109–116.PubMedCrossRefGoogle Scholar
  63. 63.
    Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103(5), 697–705.PubMedCrossRefGoogle Scholar
  64. 64.
    Xu, W., Zhang, X., Qian, H., et al. (2004). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental Biology and Medicine (Maywood), 229(7), 623–631.Google Scholar
  65. 65.
    Nagaya, N., Kangawa, K., Itoh, T., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128–1135.PubMedCrossRefGoogle Scholar
  66. 66.
    Chen, S. L., Fang, W. W., Ye, F., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94(1), 92–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Chopp, M., Zhang, X. H., Li, Y., et al. (2000). Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport, 11(13), 3001–3005.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen, J., Li, Y., Wang, L., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32(4), 1005–1011.PubMedCrossRefGoogle Scholar
  70. 70.
    Karnieli, O., Izhar-Prato, Y., Bulvik, S., et al. (2007). Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 25(11), 2837–2844.PubMedCrossRefGoogle Scholar
  71. 71.
    Inoue, Y., Iriyama, A., Ueno, S., et al. (2007). Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Experimental Eye Research, 85(2), 234–241.PubMedCrossRefGoogle Scholar
  72. 72.
    Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4(+) stem cells identified in adult bone marrow. Leukemia, 20, 857–869.PubMedCrossRefGoogle Scholar
  73. 73.
    Zuba-Surma, E. K., Kucia, M., Dawn, B., et al. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44(5), 865–873.PubMedCrossRefGoogle Scholar
  74. 74.
    Wojakowski, W., Tendera, M., Kucia, M., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with actue myocardial infarction. Journal of the American College of Cardiology, 53, 1–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Paczkowska, E., Kucia, M., Koziarska, D., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40(4), 1237–1244.PubMedCrossRefGoogle Scholar
  76. 76.
    Kucia, M. J., Wysoczynski, M., Wu, W., et al. (2008). Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 26(8), 2083–2092.PubMedCrossRefGoogle Scholar
  77. 77.
    Huang, Y., Kucia, M., Hussain, L. R., et al. (2010). Bone marrow transplantation temporarily improves pancreatic function in streptozotocin-induced diabetes: Potential involvement of very small embryonic-like cells. Transplantation, 89, 677–685.Google Scholar
  78. 78.
    Li, Y., Atmaca-Sonmez, P., Schanie, C. L., et al. (2007). Endogenous Bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Investigative Ophthalmology and Visual Science, 48(9), 4321–4327.PubMedCrossRefGoogle Scholar
  79. 79.
    Lavail, M. M., Li, L., Turner, J. E., et al. (1992). Retinal pigment epithelial cell transplantation in RCS rats: normal metabolism in rescued photoreceptors. Experimental Eye Research, 55(4), 555–562.PubMedCrossRefGoogle Scholar
  80. 80.
    Chaum, E. (2003). Retinal neuroprotection by growth factors: a mechanistic perspective. Journal of Cellular Biochemistry, 88(1), 57–75.PubMedCrossRefGoogle Scholar
  81. 81.
    Wahlin, K. J., Campochiaro, P. A., Zack, D. J., et al. (2000). Neurotrophic factors cause activation of intracellular signaling pathways in Muller cells and other cells of the inner retina, but not photoreceptors. Investigative Ophthalmology and Visual Science, 41(3), 927–936.PubMedGoogle Scholar
  82. 82.
    Parysek, L. M., del Cerro, M., & Olmsted, J. B. (1985). Microtubule-associated protein 4 antibody: a new marker for astroglia and oligodendroglia. Neuroscience, 15(3), 869–875.PubMedCrossRefGoogle Scholar
  83. 83.
    Gouras, P., Flood, M. T., Kjedbye, H., et al. (1985). Transplantation of cultured human retinal epithelium to Bruch's membrane of the owl monkey's eye. Current Eye Research, 4(3), 253–265.PubMedCrossRefGoogle Scholar
  84. 84.
    Binder, S., Krebs, I., Hilgers, R. D., et al. (2004). Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Investigative Ophthalmology and Visual Science, 45(11), 4151–4160.PubMedCrossRefGoogle Scholar
  85. 85.
    Weisz, J. M., Humayun, M. S., de Juan, E. J., et al. (1999). Allogenic fetal retinal pigment epithelial cell transplant in a patient with geographic atrophy. Retina, 19(6), 540–545.PubMedCrossRefGoogle Scholar
  86. 86.
    MacLaren, R. E., Uppal, G. S., Balaggan, K. S., et al. (2007). Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology, 114(3), 561–570.PubMedCrossRefGoogle Scholar
  87. 87.
    van Meurs, J. C., ter Averst, E., Hofland, L. J., et al. (2004). Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. British Journal of Ophthalmology, 88(1), 110–113.PubMedCrossRefGoogle Scholar
  88. 88.
    Rezai, K. A., Lappas, A., Farrokh-Siar, L., et al. (1997). Iris pigment epithelial cells of long evans rats demonstrate phagocytic activity. Experimental Eye Research, 65(1), 23–29.PubMedCrossRefGoogle Scholar
  89. 89.
    Perrault, I., Rozet, J. M., Gerber, S., et al. (1999). Leber congenital amaurosis. Molecular Genetics and Metabolism, 68(2), 200–208.PubMedCrossRefGoogle Scholar
  90. 90.
    Aramant, R. B., & Seiler, M. J. (1994). Human embryonic retinal cell transplants in athymic immunodeficient rat hosts. Cell Transplantation, 3(6), 461–474.PubMedGoogle Scholar
  91. 91.
    Radtke, N. D., Aramant, R. B., Petry, H. M., et al. (2008). Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. American Journal of Ophthalmology, 146(2), 172–182.PubMedCrossRefGoogle Scholar
  92. 92.
    Marc, R. E., Jones, B. W., Watt, C. B., et al. (2003). Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research, 22(5), 607–655.PubMedCrossRefGoogle Scholar
  93. 93.
    Lund, R. D., Kwan, A. S., Keegan, D. J., et al. (2001). Cell transplantation as a treatment for retinal disease. Progress in Retinal and Eye Research, 20(4), 415–449.PubMedCrossRefGoogle Scholar
  94. 94.
    Hoffman, L. M., & Carpenter, M. K. (2005). Characterization and culture of human embryonic stem cells. Nature Biotechnology, 23(6), 699–708.PubMedCrossRefGoogle Scholar
  95. 95.
    Idelson, M., Alper, R., Obolensky, A., et al. (2009). Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 5(4), 396–408.PubMedCrossRefGoogle Scholar
  96. 96.
    Arnhold, S., Klein, H., Semkova, I., et al. (2004). Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Investigative Ophthalmology and Visual Science, 45(12), 4251–4255.PubMedCrossRefGoogle Scholar
  97. 97.
    Haruta, M., Sasai, Y., Kawasaki, H., et al. (2004). In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. I Investigative Ophthalmology and Visual Science, 45(3), 1020–1025.CrossRefGoogle Scholar
  98. 98.
    Lund, R. D., Wang, S., Klimanskaya, I., et al. (2006). Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning and Stem Cells, 8(3), 189–199.PubMedCrossRefGoogle Scholar
  99. 99.
    Kucia, M., Halasa, M., Wysoczynski, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia, 21(2), 297–303.PubMedCrossRefGoogle Scholar
  100. 100.
    Virchow, R. (1855). Leukemia. Archiv für pathologische Anatomie und Physiologie, und für klinische Medizin, 8, 23–54.Google Scholar
  101. 101.
    Carr, A. J., Vugler, A. A., Hikita, S. T., et al. (2009). Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One, 4(12), e8152.PubMedCrossRefGoogle Scholar
  102. 102.
    Lagasse, E., Connors, H., Al Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine, 6(11), 1229–1234.PubMedCrossRefGoogle Scholar
  103. 103.
    Anderson, D. J., Gage, F. H., & Weissman, I. L. (2001). Can stem cells cross lineage boundaries? Nature Medicine, 7(4), 393–395.PubMedCrossRefGoogle Scholar
  104. 104.
    Svendsen, C. N., & Smith, A. G. (1999). New prospects for human stem-cell therapy in the nervous system. Trends in Neurosciences, 22(8), 357–364.PubMedCrossRefGoogle Scholar
  105. 105.
    Shimazaki, T. (2003). Biology and clinical application of neural stem cells. Hormone Research, 60(Suppl 3), 1–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Bez, A., Corsini, E., Curti, D., et al. (2003). Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Research, 993(1–2), 18–29.PubMedCrossRefGoogle Scholar
  107. 107.
    Clarke, D. L., Johansson, C. B., Wilbertz, J., et al. (2000). Generalized potential of adult neural stem cells. Science, 288(5471), 1660–1663.PubMedCrossRefGoogle Scholar
  108. 108.
    Bjornson, C. R., Rietze, R. L., Reynolds, B. A., et al. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401), 534–537.PubMedCrossRefGoogle Scholar
  109. 109.
    Dong, X., Pulido, J. S., Qu, T., et al. (2003). Differentiation of human neural stem cells into retinal cells. NeuroReport, 14(1), 143–146.PubMedCrossRefGoogle Scholar
  110. 110.
    Enzmann, V., Howard, R. M., Yamauchi, Y., et al. (2003). Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space. Investigative Ophthalmology and Visual Science, 44(12), 5417–5422.PubMedCrossRefGoogle Scholar
  111. 111.
    Ahmad, I., Tang, L., & Pham, H. (2000). Identification of neural progenitors in the adult mammalian eye. Biochemical and Biophysical Research Comunications, 270(2), 517–521.CrossRefGoogle Scholar
  112. 112.
    Merhi-Soussi, F., Angenieux, B., Canola, K., et al. (2006). High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells. Stem Cells, 24(9), 2060–2070.PubMedCrossRefGoogle Scholar
  113. 113.
    Ahmad, I. (2001). Stem cells: new opportunities to treat eye diseases. Investigative Ophthalmology and Visual Science, 42(12), 2743–2748.PubMedGoogle Scholar
  114. 114.
    Ratajczak, M. Z., Kucia, M., Reca, R., et al. (2004). Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia, 18(1), 29–40.PubMedCrossRefGoogle Scholar
  115. 115.
    Friedlander, M., Dorrell, M. I., Ritter, M. R., et al. (2007). Progenitor cells and retinal angiogenesis. Angiogenesis, 10(2), 89–101.PubMedCrossRefGoogle Scholar
  116. 116.
    Gandy, K. L., Domen, J., Aguila, H. L., et al. (1999). CD8+TCR+ and CD8+TCR- cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity, 11(5), 579–590.PubMedCrossRefGoogle Scholar
  117. 117.
    Schuchert, M. J., Wright, R. D., & Colson, Y. L. (2000). Characterization of a newly discovered T-cell receptor beta-chain heterodimer expressed on a CD8+ bone marrow subpopulation that promotes allogeneic stem cell engraftment. Nature Medicine, 6(8), 904–909.PubMedCrossRefGoogle Scholar
  118. 118.
    Huang, Y., Rezzoug, F., Chilton, P. M., et al. (2004). Matching at the MHC Class I K locus is essential for long-term engraftment of purified hematopoietic stem cells: a role for host NK cells in regulating HSC engraftment. Blood, 104, 873–880.PubMedCrossRefGoogle Scholar
  119. 119.
    Fugier-Vivier, I., Rezzoug, F., Huang, Y., et al. (2005). Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment. Journal of Experimental Medicine, 201(3), 373–383. PMCID: PMC2213023.PubMedCrossRefGoogle Scholar
  120. 120.
    Rezzoug, F., Huang, Y., Tanner, M. K., et al. (2008). TNFa is critical to facilitation of hematopoietic stem cell engraftment and function. Journal of Immunology, 180(1), 49–57.Google Scholar
  121. 121.
    Grimes, H. L., Schanie, C. L., Huang, Y., et al. (2004). Graft facilitating cells are derived from hematopoietic stem cells and functionally require CD3, but are distinct from T lymphocytes. Experimental Hematology, 32(10), 946–954.PubMedCrossRefGoogle Scholar
  122. 122.
    Huang, Y., Fugier-Vivier, I., Miller, T., et al. (2008). Plasmacytoid precursor dendritic cells from NOD mice exhibit impaired function: are they a component of diabetes pathogenesis? Diabetes, 57, 2360–2370. PMCID: PMC2518487.PubMedCrossRefGoogle Scholar
  123. 123.
    Colson, Y. L., Christopher, K., Glickman, J., et al. (2004). Absence of Clinical GVHD and the In Vivo Induction of Regulatory T cells following Facilitating Cell Transplantation. Blood, 104, 3829–3835.PubMedCrossRefGoogle Scholar
  124. 124.
    Taylor, K. N., Shinde-Patil, V. R., Cohick, E., et al. (2007). Induction of FoxP3+CD4+25+ regulatory T cells following hemopoietic stem cell transplantation: role of bone marrow-derived facilitating cells. Journal of Immunology, 179(4), 2153–2162.Google Scholar
  125. 125.
    Neipp, M., Zorina, T., Domenick, M. A., et al. (1998). Effect of FLT3 ligand and granulocyte colony-stimulating factor on expansion and mobilization of facilitating cells and hematopoietic stem cells in mice: kinetics and repopulating potential. Blood, 92(9), 3177–3188.PubMedGoogle Scholar
  126. 126.
    Dawn, B., Guo, Y., Rezazadeh, A., et al. (2006). Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circulation Research, 98(8), 1098–1105.PubMedCrossRefGoogle Scholar
  127. 127.
    Sanganalmath, S. K., Stein, A. B., Guo, Y., et al. (2009). The beneficial effects of postinfarct cytokine combination therapy are sustained during long-term follow-up. Journal of Molecular and Cellular Cardiology, 47(4), 528–535. PMCID: PMC2760590.PubMedCrossRefGoogle Scholar
  128. 128.
    Li, Y., Reca, R., Sonmez, P., et al. (2006). Retinal pigment epithelium damage enhances expression of chemoattracts and migration of bone marrow-derived stem cells. Investigative Ophthalmology and Visual Science, 47(4), 1646–1652.PubMedCrossRefGoogle Scholar
  129. 129.
    Atmaca-Sonmez, P., Li, Y., Yamauchi, Y., et al. (2006). Systemically transferred hematopoietic stem cells home to the subretinal space and express RPE-65 in a mouse model of retinal pigment epithelium damage. Experimental Eye Research, 83, 1295–1302.PubMedCrossRefGoogle Scholar
  130. 130.
    Humphries, M. M., Rancourt, D., Farrar, G. J., et al. (1997). Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genetics, 15(2), 216–219.PubMedCrossRefGoogle Scholar
  131. 131.
    Sanyal, S., De Ruiter, A., & Hawkins, R. K. (1980). Development and degeneration of retina in rds mutant mice: light microscopy. Journal of Comparative Neurology, 194(1), 193–207.PubMedCrossRefGoogle Scholar
  132. 132.
    Carter-Dawson, L. D., Lavail, M. M., & Sidman, R. L. (1978). Differential effect of the rd mutation on rods and cones in the mouse retina. Investigative Ophthalmology and Visual Science, 17(6), 489–498.PubMedGoogle Scholar
  133. 133.
    Bowes, C., Li, T., Danciger, M., et al. (1990). Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature, 347(6294), 677–680.PubMedCrossRefGoogle Scholar
  134. 134.
    Redmond, T. M., Yu, S., Lee, E., et al. (1998). Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nature Genetics, 20(4), 344–351.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu, S. Y., & Redmond, T. M. (1998). Role of the 3'-untranslated region of RPE65 mRNA in the translational regulation of the RPE65 gene: identification of a specific translation inhibitory element. Archives of Biochemistry and Biophysics, 357(1), 37–44.PubMedCrossRefGoogle Scholar
  136. 136.
    Lavail, M. M., Unoki, K., Yasumura, D., et al. (1992). Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proceedings of the National Academy of Science USA, 89(23), 11249–11253.CrossRefGoogle Scholar
  137. 137.
    D'Cruz, P. M., Yasumura, D., Weir, J., et al. (2009). Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Human Molecular Genetics, 9(4), 645–651.CrossRefGoogle Scholar
  138. 138.
    Jobst, K. (1967). Teratogenous changes and tumors in rats following treatment with methylnitroso-urea (MNU). Neoplasma, 14(4), 435–436.PubMedGoogle Scholar
  139. 139.
    Nagar, S., Krishnamoorthy, V., Cherukuri, P., et al. (2009). Early remodeling in an inducible animal model of retinal degeneration. Neuroscience, 160(2), 517–529.PubMedCrossRefGoogle Scholar
  140. 140.
    Marano, R. J., & Rakoczy, P. E. (2006). An improved method using densitometry for evaluating severity of laser photocoagulation induced CNV. Biotechnic & Histochemistry, 81(2–3), 59–62.CrossRefGoogle Scholar
  141. 141.
    Ambati, J., Anand, A., Fernandez, S., et al. (2003). An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nature Medicine, 9(11), 1390–1397.PubMedCrossRefGoogle Scholar
  142. 142.
    Frank, R. N., Das, A., & Weber, M. L. (1989). A model of subretinal neovascularization in the pigmented rat. Current Eye Research, 8(3), 239–247.PubMedCrossRefGoogle Scholar
  143. 143.
    elDirini, A. A., Ogden, T. E., & Ryan, S. J. (1991). Subretinal endophotocoagulation. A new model of subretinal neovascularization in the rabbit. Retina, 11(2), 244–249.PubMedCrossRefGoogle Scholar
  144. 144.
    Ohkuma, H., & Ryan, S. J. (1982). Vascular casts of experimental subretinal neovascularization in monkeys: a preliminary report. Japan’s Journal of Ophthalmology, 26(2), 150–158.Google Scholar
  145. 145.
    Noell, W. K. (1953). Experimentally induced toxic effects on structure and function of visual cells and pigment epithelium. American Journal of Ophthalmology, 36(6:2), 103–116.PubMedGoogle Scholar
  146. 146.
    Enzmann, V., Row, B. W., Yamauchi, Y., et al. (2006). Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Experimental Eye Research, 82(3), 441–448.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yiming Huang
    • 1
  • Volker Enzmann
    • 2
  • Suzanne T. Ildstad
    • 1
  1. 1.Institute for Cellular TherapeuticsUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Ophthalmology, InselspitalUniversity of BernBernSwitzerland

Personalised recommendations