Stem Cell Reviews and Reports

, Volume 6, Issue 4, pp 500–506

A Consensus Statement Addressing Mesenchymal Stem Cell Transplantation for Multiple Sclerosis: It’s Time!

  • Christopher Siatskas
  • Natalie L. Payne
  • Martin A. Short
  • Claude C. A. Bernard
Article

Abstract

Multiple sclerosis is a neurodegenerative disease of the central nervous system that is characterized by inflammation, demyelination with associated accumulation of myelin debris, oligodendrocyte and axonal loss. Current therapeutic interventions for multiple sclerosis predominantly modulate the immune system and reduce the inflammatory insult by general, non-specific mechanisms but have little effect on the neurodegenerative component of the disease. Predictably, the overall long-term impact of treatment is limited since the neurodegenerative component of the disease, which can be the dominant process in some patients, determines permanent disability. Mesenchymal stem cells, which are endowed with potent immune regulatory and neuroprotective properties, have recently emerged as promising cellular vehicles for the treatment of MS. Preclinical evaluation in experimental models of MS have shown that MSCs are efficacious in suppressing clinical disease. Mechanisms that may underlie these effects predominantly involve the secretion of immunomodulatory and neurotrophic growth factors, which collectively act to limit CNS inflammation, stimulate neurogenesis, protect axons and promote remyelination. As a logical progression to clinical utility, the safety of these cells have been initially assessed in hematological, cardiac and inflammatory diseases. Importantly, transplantation with autologous or allogeneic MSCs has been well tolerated by patients with few significant adverse effects. On the basis of these results, new, multicentre clinical trials have been launched to assess the safety and efficacy of MSCs for inflammatory MS. It thus comes as no surprise that the coalescence of an international group of experts have convened to generate a consensus guide for the transplantation of autologous bone marrow-derived MSC which, in time, may set the foundation for the next generation of therapies for the treatment of MS patients.

Keywords

Multiple sclerosis Mesenchymal stem cells Immunomodulation Neuroprotection Transplantation Clinical trials Consensus statement 

References

  1. 1.
    Sospedra, M., & Martin, R. (2005). Immunology of multiple sclerosis. Annual Review of Immunology, 23, 683–747.CrossRefPubMedGoogle Scholar
  2. 2.
    Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (1999). IL-17 and Th17 cells. Annual Review of Immunology, 27, 485–517.CrossRefGoogle Scholar
  3. 3.
    Steinman, L. (2001). Multiple sclerosis: a two-stage disease. Nature Immunology, 2, 762–765.CrossRefPubMedGoogle Scholar
  4. 4.
    Trapp, B. D., Matyszak, M. K., Esiri, M. M., Rudick, R., Mork, S., & Bo, L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285.CrossRefPubMedGoogle Scholar
  5. 5.
    Siatskas, C., & Bernard, C. C. (2009). Stem cell and gene therapeutic strategies for the treatment of multiple sclerosis. Current Molecular Medicine, 9, 992–1016.CrossRefPubMedGoogle Scholar
  6. 6.
    Steinman, L. (2001). Immunotherapy of multiple sclerosis: the end of the beginning. Current Opinion in Immunology, 13, 597–600.CrossRefPubMedGoogle Scholar
  7. 7.
    Franklin, R. J. (2002). Why does remylenation fail in muliple sclerosis? Nature Reviews. Neuroscience, 3, 705–714.CrossRefPubMedGoogle Scholar
  8. 8.
    Meirelles Lda, S., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119, 2204–2213.CrossRefGoogle Scholar
  9. 9.
    Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3, 229–230.CrossRefPubMedGoogle Scholar
  10. 10.
    Phinney, D. G., Hill, K., Michelson, C., et al. (2006). Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells, 24, 186–198.CrossRefPubMedGoogle Scholar
  11. 11.
    Pedemonte, E., Benvenuto, F., Casazza, S., et al. (2007). Molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse. BMC Genomics, 8, 65.CrossRefPubMedGoogle Scholar
  12. 12.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult mesenchymal stem cells. Science, 284, 143–147.CrossRefPubMedGoogle Scholar
  13. 13.
    Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as source of hepatic oval cells. Science, 284, 1168–1170.CrossRefPubMedGoogle Scholar
  14. 14.
    Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.CrossRefPubMedGoogle Scholar
  15. 15.
    Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE, 4, e6498.CrossRefPubMedGoogle Scholar
  16. 16.
    Payne, N., Siatskas, C., & Bernard, C. C. A. (2008). The promise of stem cell and regenerative therapies for multiple sclerosis. Journal of Autoimmunity, 31, 288–294.CrossRefPubMedGoogle Scholar
  17. 17.
    Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.CrossRefPubMedGoogle Scholar
  18. 18.
    Fox, J., Chamberlain, G., Ashton, B. A., & Middleton, J. (2009). Recent advances into the understanding of mesenchymal stem cell trafficking. British Journal Haematology, 137, 491–502.CrossRefGoogle Scholar
  19. 19.
    Karp, J. M., & Teo, G. S. L. (2009). Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 4, 206–216.CrossRefPubMedGoogle Scholar
  20. 20.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.CrossRefPubMedGoogle Scholar
  22. 22.
    Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.CrossRefPubMedGoogle Scholar
  23. 23.
    Németh, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medecine, 15, 42–49.CrossRefGoogle Scholar
  24. 24.
    Uccelli, A., & Mancardi, G. (2010). Stem cell transplantation in multiple sclerosis. Current Opinion in Neurology, 23, 218–225.CrossRefPubMedGoogle Scholar
  25. 25.
    Rafei, M., Campeau, P. M., Aguilar-Mahecha, A., et al. (2009). Mesenchymal stromal cells ameliorate experimental encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. Journal of Immunology, 182, 5994–6002.CrossRefGoogle Scholar
  26. 26.
    Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cell embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.CrossRefPubMedGoogle Scholar
  28. 28.
    Krampera, M., Glennie, S., Dyson, J., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.CrossRefPubMedGoogle Scholar
  29. 29.
    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827.CrossRefPubMedGoogle Scholar
  30. 30.
    Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107, 1484–1490.CrossRefPubMedGoogle Scholar
  31. 31.
    Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.CrossRefPubMedGoogle Scholar
  32. 32.
    Bai, L., Lennnon, D. P., Eaton, V., et al. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203.CrossRefPubMedGoogle Scholar
  33. 33.
    Selmani, Z., Naji, A., Gaiffe, E., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFoxP3+ regulatory T cells. Stem Cells, 26, 212–222.CrossRefPubMedGoogle Scholar
  34. 34.
    Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.CrossRefPubMedGoogle Scholar
  35. 35.
    Rafei, M., Hsieh, J., Fortier, S., et al. (2008). Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112, 4991–4998.CrossRefPubMedGoogle Scholar
  36. 36.
    Augello, A., Tasso, R., Negrini, S., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35, 1482–1490.CrossRefPubMedGoogle Scholar
  37. 37.
    Zappia, E., Casazza, S., Pedemonte, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.CrossRefPubMedGoogle Scholar
  38. 38.
    Gerdoni, E., Gallo, B., Casazza, S., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., & Low, W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology, 174, 11–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.CrossRefPubMedGoogle Scholar
  41. 41.
    Johansson, C. B., Youssef, S., Koleckar, K., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10, 575–583.CrossRefPubMedGoogle Scholar
  42. 42.
    Singec, I., & Snyder, E. Y. (2008). Inflammation as a matchmaker: revisiting cell fusion. Nature Cell Biology, 10, 503–505.CrossRefPubMedGoogle Scholar
  43. 43.
    Rivera, F. J., Couillard-Despres, S., Pedre, X., et al. (2006). Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells, 24, 2209–2219.CrossRefPubMedGoogle Scholar
  44. 44.
    Munoz, J.R., Stoutenger, B. R., Robinson, A. P., Spees, J. L., & Prockop, D. J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA; 105:18171-6.Google Scholar
  45. 45.
    Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N., & Wilkins, A. (2009). Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem [Epub ahead of print].Google Scholar
  46. 46.
    Crigler, L., Robey, R. C., Asawachaicharn, A., Gaupp, D., & Phinney, D. G. (2006). Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Experimental Neurology, 198, 54–64.CrossRefPubMedGoogle Scholar
  47. 47.
    Lanza, C., Morando, S., Voci, A., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.CrossRefPubMedGoogle Scholar
  48. 48.
    Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.CrossRefPubMedGoogle Scholar
  49. 49.
    Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine, 5, 309–313.CrossRefPubMedGoogle Scholar
  50. 50.
    Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells promote survival lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 367–372.CrossRefGoogle Scholar
  51. 51.
    Mao, F., Xu, W. R., Qian, H., et al. (2010). Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflammation Research, 59, 219–225.CrossRefPubMedGoogle Scholar
  52. 52.
    Fiorina, P., Jurewicz, M., Augello, A., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183, 993–1004.CrossRefGoogle Scholar
  53. 53.
    Schena, F., Gambini, C., Gregorio, A., et al. (2010). IFN-gamma dependent inhibition of B cell activation by bone marrow derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2010 May 21. [Epub ahead of print].Google Scholar
  54. 54.
    Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., et al. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Archives of Neurology, 65, 753–761.CrossRefPubMedGoogle Scholar
  55. 55.
    Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.CrossRefPubMedGoogle Scholar
  56. 56.
    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft versus host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.CrossRefPubMedGoogle Scholar
  57. 57.
    Okamoto, R., Yajima, T., Yamazaki, M., et al. (2002). Damaged epithelia generated by bone marrow-derived cells in the human gastrointestinal tract. Nature Medicine, 8, 1011–1017.CrossRefPubMedGoogle Scholar
  58. 58.
    Ball, L. M., Bernardo, M. E., Roelofs, H., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110, 2764–2767.CrossRefPubMedGoogle Scholar
  59. 59.
    Williams, B. A., & Keating, A. (2008). Cell therapy for age-related disorders: myocardial infarction and stroke - a mini review. Gerontology, 54, 300–311.CrossRefPubMedGoogle Scholar
  60. 60.
    Koc, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307–316.PubMedGoogle Scholar
  61. 61.
    Lazarus, H., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.CrossRefPubMedGoogle Scholar
  62. 62.
    Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., et al. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal of Immunology, 4, 50–57.PubMedGoogle Scholar
  63. 63.
    Slavin, S., Kurkalli, B. G. S., & Karussis, D. (2008). The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clinical Neurology and Neurosurgery, 110, 943–946.CrossRefPubMedGoogle Scholar
  64. 64.
    Tyndall, A. (2010). Mesenchymal stem cells for multiple sclerosis: can we find the answer? Multiple Sclerosis, 16, 386.CrossRefPubMedGoogle Scholar
  65. 65.
    Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesnechymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.CrossRefPubMedGoogle Scholar
  66. 66.
    Kidd, S., Spaeth, E., Dembinski, J. L., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang, H., Cao, F., De, A., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.CrossRefPubMedGoogle Scholar
  68. 68.
    Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.CrossRefPubMedGoogle Scholar
  69. 69.
    Rubio, D., Garcia-Castro, J., Martin, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.PubMedGoogle Scholar
  70. 70.
    Tolar, J., Nauta, A. J., Osborn, M. J., et al. (2006). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25, 371–379.CrossRefPubMedGoogle Scholar
  71. 71.
    Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67, 9142–9149.CrossRefPubMedGoogle Scholar
  72. 72.
    Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.CrossRefPubMedGoogle Scholar
  73. 73.
    Kastrinaki, M. C., Sidiropoulos, P., Roche, S., et al. (2007). Functional, molecular and proteomic characterization of bone marrow mesnechymal stem cells in rheumatoid arthritis. Annals of the Rheumatic Diseases, 67, 741–749.CrossRefPubMedGoogle Scholar
  74. 74.
    Mazzanti, B., Aldinucci, A., Biagioli, T., et al. (2008). Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: Implication for assessment of disease activity and treatment. Journal of Neuroimmunology, 199, 142–150.CrossRefPubMedGoogle Scholar
  75. 75.
    Bocelli-Tyndall, C., Bracci, L., Spagnoli, G., et al. (2006). Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology, 46, 403–408.CrossRefPubMedGoogle Scholar
  76. 76.
    Allison, M. (2009). Genzyme backs Osiris, despite Prochymal flop. Nature Biotechnology, 27, 966–967.CrossRefPubMedGoogle Scholar
  77. 77.
    Martino, G., Franklin, R. J. M., Evercooren, A. B. V., & Kerr, D. A. (2010). Stem cell transplantion in multiple sclerosis: current status and future prospects. Nature Reviews Neurology, 6, 247–255.CrossRefPubMedGoogle Scholar
  78. 78.
    Freedman, M. S., Bar-Or, A., Atkins, H. L., et al. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Multiple Sclerosis, 16, 503–510.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christopher Siatskas
    • 1
  • Natalie L. Payne
    • 1
  • Martin A. Short
    • 1
  • Claude C. A. Bernard
    • 1
  1. 1.Monash immunology and stem cell laboratoriesMonash UniversityClaytonAustralia

Personalised recommendations