Stem Cell Reviews and Reports

, Volume 7, Issue 1, pp 17–31 | Cite as

Growth and Differentiation Properties of Mesenchymal Stromal Cell Populations Derived from Whole Human Umbilical Cord

  • Ingrida Majore
  • Pierre Moretti
  • Frank Stahl
  • Ralf Hass
  • Cornelia Kasper


Up to 2.8 × 107 fibroblast-like cells displaying an abundant presence of mesenchymal stem cell (MSC) markers CD73, CD90, CD105 and a low level of HLA-I expression can be isolated from one whole human umbilical cord (UC) using a simple and highly reproducible explant culture approach. Cells derived from whole UC, similar to cells collected from separate compartments of UC, display a distinct chondrogenic and adipogenic potential. Therefore they are potential candidates for cartilage and adipose tissue engineering. Cell differentiation along the osteogenic pathway is, however, less efficient, even after the addition of 1.25-dihydroxyvitamin D3, a potent osteoinductive substance. Isolated cells are highly proliferative, tolerate cryopreservation with an average survival rate of about 75% and after thawing can be propagated further, at least over 20 population doublings before their proliferative activity begins to decline. More importantly, they synthesize numerous trophic factors including neurotrophins and factors which facilitate angiogenesis and hematopoiesis. In conclusion, cells isolated from whole UC satisfies all requirements essential for the generation of stem cell banks containing permanently available cell material for applications in the field of regenerative medicine. Nevertheless, further studies are needed to improve and adjust the methods which are already employed for adult MSC expansion and differentiation to specific properties and requirements of the primitive stem cells collected from UC. So, our data verify that the choice of individual parameters for cell propagation, such as duration of cell expansion and cell seeding density, has a substantial impact on the quality of UC-derived cell populations.


Umbilical cord Multipotent mesenchymal stromal cells Proliferation Differentiation Cytokine expression 



The authors would like to thank Martin Pähler for the technical assistance and accomplishment of RT-PCR analysis, Dr. Johanna Walter for the help in the evaluation of Human Cytokine Antibody Array and Prof. DDr. Martijn van Griensven from the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (Vienna, Austria) for kindly provided adipose tissue-derived MSC.

This study was supported by a grant from the German Research Foundation (Project number KA 1784/5).


  1. 1.
    Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology & Experimental Morphology, 16(3), 381–390.Google Scholar
  2. 2.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.CrossRefPubMedGoogle Scholar
  3. 3.
    Dennis, J. E., Merriam, A., Awadallah, A., Yoo, J. U., Johnstone, B., & Caplan, A. I. (1999). A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. Journal of Bone and Mineral Research, 14, 700–709.CrossRefPubMedGoogle Scholar
  4. 4.
    Choong, P. F., Mok, P. L., Cheong, S. K., Leong, C. F., & Then, K. Y. (2007). Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy, 9(2), 170–183.CrossRefPubMedGoogle Scholar
  5. 5.
    Xu, R., Jiang, X., Guo, Z., et al. (2008). Functional analysis of neuron-like cells differentiated from neural stem cells derived from bone marrow stroma cells in vitro. Cellular and Molecular Neurobiology, 28(4), 545–558.CrossRefPubMedGoogle Scholar
  6. 6.
    Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal (Engl), 120(9), 771–776.Google Scholar
  7. 7.
    Saulnier, N., Lattanzi, W., Puglisi, M. A., et al. (2009). Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. European Review for Medical and Pharmacological Sciences, 13(1), 71–78.PubMedGoogle Scholar
  8. 8.
    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.CrossRefPubMedGoogle Scholar
  9. 9.
    Kode, J. A., Mukherjee, S., Joglekar, M. V., & Hardikar, A. A. (2009). Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy, 11(4), 377–391.CrossRefPubMedGoogle Scholar
  10. 10.
    Siegel, G., Schäfer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87(9), 45–49.CrossRefGoogle Scholar
  11. 11.
    Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.CrossRefGoogle Scholar
  12. 12.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.CrossRefPubMedGoogle Scholar
  13. 13.
    Hui, J. H., Ouyang, H. W., Hutmacher, D. W., Goh, J. C., & Lee, E. H. (2005). Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Annals of the Academy of Medicine, Singapore, 34(2), 206–212.PubMedGoogle Scholar
  14. 14.
    Kraus, K. H., & Kirker-Head, C. (2006). Mesenchymal stem cells and bone regeneration. Veterinary Surgery, 35(3), 232–242.CrossRefPubMedGoogle Scholar
  15. 15.
    Mobasheri, A., Csaki, C., Clutterbuck, A. L., Rahmanzadeh, M., & Shakibaei, M. (2009). Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histology and Histopathology, 24(3), 347–366.PubMedGoogle Scholar
  16. 16.
    Syková, E., Jendelová, P., Urdzíková, L., Lesný, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cellular and Molecular Neurobiology, 26(7-8), 1113–1129.CrossRefPubMedGoogle Scholar
  17. 17.
    Perin E. (2004). Transendocardial injection of autologous mononuclear bone marrow cells in end-stage ischemic heart failure patients: one-year follow-up. International Journal of Cardiology, 95(Suppl 1), S45–S46.Google Scholar
  18. 18.
    Stamm, C., Kleine, H. D., Westphal, B., et al. (2004). CABG and bone marrow stem cell transplantation after myocardial infarction. Thoracic and Cardiovascular Surgeon, 52(3), 152–158.CrossRefPubMedGoogle Scholar
  19. 19.
    Lazarus, H. M., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398.CrossRefPubMedGoogle Scholar
  20. 20.
    Fouillard, L., Chapel, A., Bories, D., et al. (2007). Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia, 21(3), 568–570.CrossRefPubMedGoogle Scholar
  21. 21.
    Horwitz, E. M., Prockop, D. J., Gordon, P. L., et al. (2001). Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 97(5), 1227–1231.CrossRefPubMedGoogle Scholar
  22. 22.
    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.CrossRefPubMedGoogle Scholar
  23. 23.
    Ringdén, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.CrossRefPubMedGoogle Scholar
  24. 24.
    Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., & Gerson, S. L. (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 9(6), 841–848.CrossRefGoogle Scholar
  25. 25.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.CrossRefPubMedGoogle Scholar
  26. 26.
    Lda Meirelles, S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5-6), 419–427.CrossRefGoogle Scholar
  27. 27.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRefPubMedGoogle Scholar
  28. 28.
    Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. The Journal of Pathology, 217(2), 318–324.CrossRefPubMedGoogle Scholar
  29. 29.
    Kuo, C. K., Li, W. J., Mauck, R. L., & Tuan, R. S. (2006). Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 18(1), 64–73.CrossRefPubMedGoogle Scholar
  30. 30.
    da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.CrossRefPubMedGoogle Scholar
  31. 31.
    Marcus, A. J., & Woodbury, D. (2008). Fetal stem cells from extra-embryonic tissues: do not discard. Journal of Cellular and Molecular Medicine, 12(3), 730–742.CrossRefPubMedGoogle Scholar
  32. 32.
    Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25, 1384–1392.CrossRefPubMedGoogle Scholar
  33. 33.
    Can, A., & Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25(11), 2886–2895.CrossRefPubMedGoogle Scholar
  34. 34.
    Weiss, M. L., & Troyer, D. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.CrossRefPubMedGoogle Scholar
  35. 35.
    Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., Jeschke, M. G. (2009). Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev, Jul 27, [Epub ahead of print].Google Scholar
  36. 36.
    Covas, D. T., Siufi, J. L., Silva, A. R., & Orellana, M. D. (2003). Isolation and culture of umbilical vein mesenchymal stem cells. Brazilian Journal of Medical and Biological Research, 36, 1179–1183.CrossRefPubMedGoogle Scholar
  37. 37.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.CrossRefPubMedGoogle Scholar
  38. 38.
    Weiss, M. L., Medicetty, S., & Bledsoe, A. R. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells, 24(3), 781–792.CrossRefPubMedGoogle Scholar
  39. 39.
    La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.CrossRefPubMedGoogle Scholar
  40. 40.
    Brockhoff, G. (2007). Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie. In U. Sack, A. Tárnok, & G. Rothe (Eds.), Zelluläre Diagnostik (Vol. 1, pp. 604–646). Basel: Karger.Google Scholar
  41. 41.
    Majore, I., Moretti, P., Hass, R., Kasper, C. (2009). Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal. Accessed 20 March 2009.
  42. 42.
    Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245–4248.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsutsumi, S., Shimazu, A., Miyazaki, K., et al. (2001). Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochemical and Biophysical Research Communications, 288(2), 413–419.CrossRefPubMedGoogle Scholar
  44. 44.
    Bianchi, G., Banfi, A., Mastrogiacomo, M., et al. (2003). Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 287(1), 98–105.CrossRefPubMedGoogle Scholar
  45. 45.
    Thomson, J. A., Itskovitz-Eldor, J., Sander, S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefPubMedGoogle Scholar
  46. 46.
    Gronthos, S., Fitter, S., Diamond, P., et al. (2007). A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells and Development, 16(6), 953–963.CrossRefPubMedGoogle Scholar
  47. 47.
    Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., et al. (2008). Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 32, 8–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., et al. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27, 126–137.CrossRefPubMedGoogle Scholar
  49. 49.
    Raval, A., Puri, N., Rath, P. C., & Saxena, R. K. (1998). Cytokine regulation of expression of class I MHC antigens. Experimental & Molecular Medicine, 30(1), 1–13.Google Scholar
  50. 50.
    Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., et al. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.CrossRefPubMedGoogle Scholar
  51. 51.
    Jo, C. H., Kim, O. S., Park, E. Y., Kim, B. J., Lee, J. H., Kang, S. B., et al. (2008). Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell and Tissue Research, 334, 423–433.CrossRefPubMedGoogle Scholar
  52. 52.
    Sarugaser, R., Ennis, J., Stanford, W. L., & Davies, J. E. (2009). Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods in Molecular Biology, 482, 269–279.CrossRefPubMedGoogle Scholar
  53. 53.
    Chung, C., & Burdick, J. A. (2009). Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Engineering. Part A, 15(2), 243–254.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu, S. C., Chang, J. K., Wang, C. K., Wang, G. J., & Ho, M. L. (2010). Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials, 31(4), 631–640.CrossRefPubMedGoogle Scholar
  55. 55.
    Diao, Y., Ma, Q., Cui, F., & Zhong, Y. (2008). Human umbilical cord mesenchymal stem cells: Osteogenesis in vivo as seed cells for bone tissue engineering. Journal of Biomedical Materials Research. Part A, 91(1), 123–131.Google Scholar
  56. 56.
    Hou, T., Xu, J., Wu, X., et al. (2009). Umbilical cord Wharton's Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Engineering. Part A, 15(9), 2325–2334.CrossRefPubMedGoogle Scholar
  57. 57.
    Suzdal'tseva, Y. G., Burunova, V. V., Vakhrushev, I. V., Yarygin, V. N., & Yarygin, K. N. (2007). Capability of human mesenchymal cells isolated from different sources to differentiation into tissues of mesodermal origin. Bulletin of Experimental Biology and Medicine, 143, 114–121.CrossRefPubMedGoogle Scholar
  58. 58.
    Girdlestone, J., Limbani, V. A., Cutler, A. J., & Navarrete, C. V. (2009). Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions. Cytotherapy, 11(6), 738–748.CrossRefPubMedGoogle Scholar
  59. 59.
    Ishige, I., Nagamura-Inoue, T., Honda, M. J., et al. (2009). Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton's jelly explants of human umbilical cord. International Journal of Hematology, 90(2), 261–269.CrossRefPubMedGoogle Scholar
  60. 60.
    Horwitz, E. M., Le Blanc, K., Dominaci, M., et al. (2005). Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy, 7(5), 393–395.CrossRefPubMedGoogle Scholar
  61. 61.
    Suva, D., Garavaglia, G., Menetrey, J., et al. (2004). Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. Journal of Cellular Physiology, 198(1), 110–118.CrossRefPubMedGoogle Scholar
  62. 62.
    Rubio, D., Garcia-Castro, J., Martín, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.PubMedGoogle Scholar
  63. 63.
    Battiwalla, M., & Hematti, P. (2009). Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy, 11(5), 503–515.CrossRefPubMedGoogle Scholar
  64. 64.
    Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7841–7845.CrossRefPubMedGoogle Scholar
  65. 65.
    Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 24(2), 462–471.CrossRefPubMedGoogle Scholar
  66. 66.
    Małkowski, A., Sobolewski, K., Jaworski, S., & Bańkowski, E. (2008). TGF-beta binding in human Wharton's jelly. Molecular and Cellular Biochemistry, 311(1-2), 137–143.CrossRefPubMedGoogle Scholar
  67. 67.
    Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.PubMedGoogle Scholar
  68. 68.
    Hiroyama, T., Sudo, K., Aoki, N., et al. (2008). Human umbilical cord-derived cells can often serve as feeder cells to maintain primate embryonic stem cells in a state capable of producing hematopoietic cells. Cell Biology International, 32(1), 1–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ingrida Majore
    • 1
  • Pierre Moretti
    • 1
  • Frank Stahl
    • 1
  • Ralf Hass
    • 2
  • Cornelia Kasper
    • 1
  1. 1.Institute of Technical ChemistryLeibniz University of HannoverHannoverGermany
  2. 2.Laboratory of Biochemistry and Tumor Biology, Department of Obstetrics and GynecologyMedical UniversityHannoverGermany

Personalised recommendations