Stem Cell Reviews and Reports

, Volume 7, Issue 1, pp 181–194 | Cite as

Transplantation of Umbilical Cord Blood Stem Cells for Treating Spinal Cord Injury

  • Dong-Hyuk Park
  • Jeong-Hyun Lee
  • Cesario V. Borlongan
  • Paul R. Sanberg
  • Yong-Gu Chung
  • Tai-Hyoung Cho
Article

Abstract

Spinal cord injury (SCI) develops primary and secondary damage to neural tissue and this often results in permanent disability of the motor and sensory functions. However, there is currently no effective treatment except methylprednisolone, and the use of methylprednisolone has also been questioned due to its moderate efficacy and the drug’s downside. Regenerative medicine has remarkably developed since the discovery of stem cells, and many studies have suggested the potential of cell-based therapies for neural injury. Especially, the therapeutic potential of human umbilical cord blood cells (hUCB cells) for intractable neurological disorders has been demonstrated using in vitro and vivo models. The hUCB cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Their ability to produce several neurotropic factors and to modulate immune and inflammatory reactions has also been noted. Recent evidence has emerged suggesting alternative pathways of graft-mediated neural repair that involve neurotrophic effects. These effects are caused by the release of various growth factors that promote cell survival, angiogenesis and anti-inflammation, and this is all aside from a cell replacement mechanism. In this review, we present the recent findings on the stemness properties and the therapeutic potential of hUCB as a safe, feasible and effective cellular source for transplantation in SCI. These multifaceted protective and restorative effects from hUCB grafts may be interdependent and they act in harmony to promote therapeutic benefits for SCI. Nevertheless, clinical studies with hUCB are still rare because of the concerns about safety and efficiency. Among these concerns, the major histocompatibility in allogeneic transplantation is an important issue to be addressed in future clinical trials for treating SCI.

Keywords

Human umbilical cord blood Stem cells Transplantation Spinal cord injury Animal models 

Notes

Acknowledgement

This study was supported by a Korea University grant.

Conflict of Interest

This contribution is funded by Korea University. Drs. Sanberg and Borlongan serve as consultants to a number of stem cell-based companies. Drs. Park, Sanberg and Borlongan are members of American Society of Neural Therapy and Repair.

References

  1. 1.
    The National Spinal Cord Injury Statistical Center. (2010). Spinal cord injury facts and figures at a glance. https://www.nscisc.uab.edu/public_content/pdf/Facts%20and%20Figures%20at%20a%20Glance%202010.pdf. Accessed 16 April 2010.
  2. 2.
    Bracken, M. B., Shepard, M. J., Hellenbrand, K. G., Collins, W. F., Leo, L. S., Freeman, D. F., et al. (1985). Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. Journal of Neurosurgery, 63(5), 704–713.CrossRefPubMedGoogle Scholar
  3. 3.
    Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. New England Journal of Medicine, 322(20), 1405–1411.CrossRefPubMedGoogle Scholar
  4. 4.
    Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., et al. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. Journal of the American Medical Association, 277(20), 1597–1604.CrossRefPubMedGoogle Scholar
  5. 5.
    Short, D. J., El Masry, W. S., & Jones, P. W. (2000). High dose methylprednisolone in the management of acute spinal cord injury—a systematic review from a clinical perspective. Spinal Cord, 38(5), 273–286.CrossRefPubMedGoogle Scholar
  6. 6.
    Coutts, M., & Keirstead, H. S. (2008). Stem cells for the treatment of spinal cord injury. Experimental Neurology, 209(2), 368–377.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim, B. G., Hwang, D. H., Lee, S. I., Kim, E. J., & Kim, S. U. (2007). Stem cell-based cell therapy for spinal cord injury. Cell Transplantation, 16(4), 355–364.PubMedGoogle Scholar
  8. 8.
    Chang, Y. C., Shyu, W. C., Lin, S. Z., & Li, H. (2007). Regenerative therapy for stroke. Cell Transplantation, 16(2), 171–181.PubMedGoogle Scholar
  9. 9.
    Johnson, P. J., Tatara, A., Shiu, A., & Sakiyama-Elbert, S. E. (2010). Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplantation, 19(1), 89–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Mothe, A. J., Kulbatski, I., Parr, A., Mohareb, M., & Tator, C. H. (2008). Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant, 17(7), 735–751.CrossRefPubMedGoogle Scholar
  11. 11.
    Daar, A. S., Bhatt, A., Court, E., & Singer, P. A. (2004). Stem cell research and transplantation: science leading ethics. Transplantation Proceedings, 36(8), 2504–2506.CrossRefPubMedGoogle Scholar
  12. 12.
    Henon, P. R. (2003). Human embryonic or adult stem cells: an overview on ethics and perspectives for tissue engineering. Advances in Experimental Medicine and Biology, 534, 27–45.PubMedGoogle Scholar
  13. 13.
    Riaz, S. S., Jauniaux, E., Stern, G. M., & Bradford, H. F. (2002). The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro. Brain Research. Developmental Brain Research, 136(1), 27–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Sathananthan, A. H., & Trounson, A. (2005). Human embryonic stem cells and their spontaneous differentiation. Italian Journal of Anatomy and Embryology, 110(2 Suppl 1), 151–157.PubMedGoogle Scholar
  15. 15.
    Ramsay, N. K., Davies, S., Wagner, J., McGough, E., & McGlave, P. B. (1996). Bone marrow transplantation. New strategies for treating malignant disease. Minnesota Medicine, 79(4), 23–28.PubMedGoogle Scholar
  16. 16.
    Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.CrossRefPubMedGoogle Scholar
  17. 17.
    Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284(5417), 1168–1170.CrossRefPubMedGoogle Scholar
  18. 18.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.CrossRefPubMedGoogle Scholar
  19. 19.
    Cho, S. R., Kim, Y. R., Kang, H. S., Yim, S. H., Park, C. I., Min, Y. H., et al. (2009). Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of spinal cord injury. Cell Transplantation, 18(12), 1359–1368.PubMedGoogle Scholar
  20. 20.
    Armitage, J. O. (1994). Bone marrow transplantation. New England Journal of Medicine, 330(12), 827–838.CrossRefPubMedGoogle Scholar
  21. 21.
    Newcomb, J. D., Sanberg, P. R., Klasko, S. K., & Willing, A. E. (2007). Umbilical cord blood research: current and future perspectives. Cell Transplantation, 16(2), 151–158.PubMedGoogle Scholar
  22. 22.
    Tse, W. & Laughlin, M. J. (2005). Umbilical cord blood transplantation: a new alternative option. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 377–383.Google Scholar
  23. 23.
    Knutsen, A. P., & Wall, D. A. (1999). Kinetics of T-cell development of umbilical cord blood transplantation in severe T-cell immunodeficiency disorders. Journal of Allergy and Clinical Immunology, 103(5 Pt 1), 823–832.CrossRefPubMedGoogle Scholar
  24. 24.
    Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C. B., & Lansdorp, P. M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proceedings of the National Academy of Sciences of the United States of America, 91(21), 9857–9860.CrossRefPubMedGoogle Scholar
  25. 25.
    Willing, A. E., Lixian, J., Milliken, M., Poulos, S., Zigova, T., Song, S., et al. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. Journal of Neuroscience Research, 73(3), 296–307.CrossRefPubMedGoogle Scholar
  26. 26.
    Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109(1), 235–242.CrossRefPubMedGoogle Scholar
  27. 27.
    Berger, M. J., Adams, S. D., Tigges, B. M., Sprague, S. L., Wang, X. J., Collins, D. P., et al. (2006). Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy, 8(5), 480–487.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim, J. W., Kim, S. Y., Park, S. Y., Kim, Y. M., Kim, J. M., Lee, M. H., et al. (2004). Mesenchymal progenitor cells in the human umbilical cord. Annals of Hematology, 83(12), 733–738.CrossRefPubMedGoogle Scholar
  29. 29.
    Todaro, A. M., Pafumi, C., Pernicone, G., Munda, S., Pilastro, M. R., Russo, A., et al. (2000). Haematopoietic progenitors from umbilical cord blood. Blood Purification, 18(2), 144–147.CrossRefPubMedGoogle Scholar
  30. 30.
    Nayar, B., Raju, G. M., & Deka, D. (2002). Hematopoietic stem/progenitor cell harvesting from umbilical cord blood. International Journal of Gynaecology and Obstetrics, 79(1), 31–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Broxmeyer, H. E., Hangoc, G., Cooper, S., Ribeiro, R. C., Graves, V., Yoder, M., et al. (1992). Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 4109–4113.CrossRefPubMedGoogle Scholar
  32. 32.
    Nakahata, T., & Ogawa, M. (1982). Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. Journal of Clinical Investigation, 70(6), 1324–1328.CrossRefPubMedGoogle Scholar
  33. 33.
    Frassoni, F., Podesta, M., Maccario, R., Giorgiani, G., Rossi, G., Zecca, M., et al. (2003). Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood, 102(3), 1138–1141.CrossRefPubMedGoogle Scholar
  34. 34.
    Pranke, P., Failace, R. R., Allebrandt, W. F., Steibel, G., Schmidt, F., & Nardi, N. B. (2001). Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematologica, 105(2), 71–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen, N., Hudson, J. E., Walczak, P., Misiuta, I., Garbuzova-Davis, S., Jiang, L., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23(10), 1560–1570.CrossRefPubMedGoogle Scholar
  36. 36.
    Mikami, T., Eguchi, M., Kurosawa, H., Sato, Y., Sugita, K., Suzumura, H., et al. (2002). Ultrastructural and cytochemical characterization of human cord blood cells. Medical Electron Microscopy, 35(2), 96–101.CrossRefPubMedGoogle Scholar
  37. 37.
    Harris, D. T., Schumacher, M. J., Locascio, J., Besencon, F. J., Olson, G. B., DeLuca, D., et al. (1992). Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10006–10010.CrossRefPubMedGoogle Scholar
  38. 38.
    D’Arena, G., Musto, P., Cascavilla, N., Di Giorgio, G., Fusilli, S., Zendoli, F., et al. (1998). Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica, 83(3), 197–203.PubMedGoogle Scholar
  39. 39.
    Zola, H., Fusco, M., Macardle, P. J., Flego, L., & Roberton, D. (1995). Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatric Research, 38(3), 397–403.PubMedGoogle Scholar
  40. 40.
    Gluckman, E., & Rocha, V. (2005). History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy, 7(3), 219–227.CrossRefPubMedGoogle Scholar
  41. 41.
    Rainsford, E., & Reen, D. J. (2002). Interleukin 10, produced in abundance by human newborn T cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. British Journal of Haematology, 116(3), 702–709.CrossRefPubMedGoogle Scholar
  42. 42.
    Asseman, C., & Powrie, F. (1998). Interleukin 10 is a growth factor for a population of regulatory T cells. Gut, 42(2), 157–158.CrossRefPubMedGoogle Scholar
  43. 43.
    Jiang, Q., Azuma, E., Hirayama, M., Iwamoto, S., Kumamoto, T., Kobayashi, M., et al. (2001). Functional immaturity of cord blood monocytes as detected by impaired response to hepatocyte growth factor. Pediatrics International, 43(4), 334–339.CrossRefPubMedGoogle Scholar
  44. 44.
    Theilgaard-Monch, K., Raaschou-Jensen, K., Palm, H., Schjodt, K., Heilmann, C., Vindelov, L., et al. (2001). Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplantation, 28(11), 1073–1082.CrossRefPubMedGoogle Scholar
  45. 45.
    Willing, A. E., Eve, D. J., & Sanberg, P. R. (2007). Umbilical cord blood transfusions for prevention of progressive brain injury and induction of neural recovery: an immunological perspective. Regenerative Medicine, 2(4), 457–464.CrossRefPubMedGoogle Scholar
  46. 46.
    Arpinati, M., Green, C. L., Heimfeld, S., Heuser, J. E., & Anasetti, C. (2000). Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood, 95(8), 2484–2490.PubMedGoogle Scholar
  47. 47.
    Garderet, L., Dulphy, N., Douay, C., Chalumeau, N., Schaeffer, V., Zilber, M. T., et al. (1998). The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood, 91(1), 340–346.PubMedGoogle Scholar
  48. 48.
    Thomson, B. G., Robertson, K. A., Gowan, D., Heilman, D., Broxmeyer, H. E., Emanuel, D., et al. (2000). Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood, 96(8), 2703–2711.PubMedGoogle Scholar
  49. 49.
    Cardoso, A. A., Li, M. L., Batard, P., Hatzfeld, A., Brown, E. L., Levesque, J. P., et al. (1993). Release from quiescence of CD34+ CD38− human umbilical cord blood cells reveals their potentiality to engraft adults. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8707–8711.CrossRefPubMedGoogle Scholar
  50. 50.
    Conrad, P. D., & Emerson, S. G. (1998). Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation. Journal of Leukocyte Biology, 64(2), 147–155.PubMedGoogle Scholar
  51. 51.
    Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.PubMedGoogle Scholar
  52. 52.
    Kobari, L., Giarratana, M. C., Pflumio, F., Izac, B., Coulombel, L., & Douay, L. (2001). CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells. Journal of Hematotherapy and Stem Cell Research, 10(2), 273–281.CrossRefPubMedGoogle Scholar
  53. 53.
    Hao, S. G., Sun, G. L., Wu, W. L., & Wu, Y. L. (2003). Studies on the dynamics of biological characteristics of CD133+ cells from human umbilical cord blood during short-term culture. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 11(6), 569–575.PubMedGoogle Scholar
  54. 54.
    Ma, Y., Zou, P., Xiao, J., & Huang, S. (2002). The expression and functional characteristics of AC133 antigen in cord blood hematopoietic cells. Zhonghua Nei Ke Za Zhi, 41(12), 798–800.PubMedGoogle Scholar
  55. 55.
    Garbuzova-Davis, S., Willing, A. E., Saporta, S., Bickford, P. C., Gemma, C., Chen, N., et al. (2006). Novel cell therapy approaches for brain repair. Progress in Brain Research, 157, 207–222.CrossRefPubMedGoogle Scholar
  56. 56.
    Tamaki, S., Eckert, K., He, D., Sutton, R., Doshe, M., Jain, G., et al. (2002). Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. Journal of Neuroscience Research, 69(6), 976–986.CrossRefPubMedGoogle Scholar
  57. 57.
    Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14720–14725.CrossRefPubMedGoogle Scholar
  58. 58.
    Cheshier, S. H., Kalani, M. Y., Lim, M., Ailles, L., Huhn, S. L., & Weissman, I. L. (2009). A neurosurgeon’s guide to stem cells, cancer stem cells, and brain tumor stem cells. Neurosurgery, 65(2), 237–249. discussion 249–250; quiz N236.CrossRefPubMedGoogle Scholar
  59. 59.
    Sanchez-Ramos, J. R., Song, S., Kamath, S. G., Zigova, T., Willing, A., Cardozo-Pelaez, F., et al. (2001). Expression of neural markers in human umbilical cord blood. Experimental Neurology, 171(1), 109–115.CrossRefPubMedGoogle Scholar
  60. 60.
    Bicknese, A. R., Goodwin, H. S., Quinn, C. O., Henderson, V. C., Chien, S. N., & Wall, D. A. (2002). Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplantation, 11(3), 261–264.PubMedGoogle Scholar
  61. 61.
    Buzanska, L., Machaj, E. K., Zablocka, B., Pojda, Z., & Domanska-Janik, K. (2002). Human cord blood-derived cells attain neuronal and glial features in vitro. Journal of Cell Science, 115(Pt 10), 2131–2138.PubMedGoogle Scholar
  62. 62.
    Jurga, M., Markiewicz, I., Sarnowska, A., Habich, A., Kozlowska, H., Lukomska, B., et al. (2006). Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. Journal of Neuroscience Research, 83(4), 627–637.CrossRefPubMedGoogle Scholar
  63. 63.
    Zigova, T., Song, S., Willing, A. E., Hudson, J. E., Newman, M. B., Saporta, S., et al. (2002). Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplantation, 11(3), 265–274.PubMedGoogle Scholar
  64. 64.
    Goodwin, H. S., Bicknese, A. R., Chien, S. N., Bogucki, B. D., Quinn, C. O., & Wall, D. A. (2001). Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biology of Blood and Marrow Transplantation, 7(11), 581–588.CrossRefPubMedGoogle Scholar
  65. 65.
    McGuckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295(2), 350–359.CrossRefPubMedGoogle Scholar
  66. 66.
    Garbuzova-Davis, S., Willing, A. E., Zigova, T., Saporta, S., Justen, E. B., Lane, J. C., et al. (2003). Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. Journal of Hematotherapy and Stem Cell Research, 12(3), 255–270.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen, N., Kamath, S., Newcomb, J., Hudson, J., Garbuzova-Davis, S., Bickford, P., et al. (2007). Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. Journal of Neural Engineering, 4(2), 130–145.CrossRefPubMedGoogle Scholar
  68. 68.
    Darian-Smith, C. (2009). Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist, 15(2), 149–165.CrossRefPubMedGoogle Scholar
  69. 69.
    Schwab, M. E., & Bartholdi, D. (1996). Degeneration and regeneration of axons in the lesioned spinal cord. Physiological Reviews, 76(2), 319–370.PubMedGoogle Scholar
  70. 70.
    Waxman, S. G., Ransom, B. R., & Stys, P. K. (1991). Non-synaptic mechanisms of Ca(2+)-mediated injury in CNS white matter. Trends in Neuroscience, 14(10), 461–468.CrossRefGoogle Scholar
  71. 71.
    Li, Y., & Raisman, G. (1994). Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. Journal of Neuroscience, 14(7), 4050–4063.PubMedGoogle Scholar
  72. 72.
    Fawcett, J. W., & Asher, R. A. (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377–391.CrossRefPubMedGoogle Scholar
  73. 73.
    Finkelstein, S. D., Gillespie, J. A., Markowitz, R. S., Johnson, D. D., & Black, P. (1990). Experimental spinal cord injury: qualitative and quantitative histopathologic evaluation. Journal of Neurotrauma, 7(1), 29–40.CrossRefPubMedGoogle Scholar
  74. 74.
    Guest, J. D., Hiester, E. D., & Bunge, R. P. (2005). Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Experimental Neurology, 192(2), 384–393.CrossRefPubMedGoogle Scholar
  75. 75.
    Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N., & Beattie, M. S. (1997). Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine, 3(1), 73–76.CrossRefPubMedGoogle Scholar
  76. 76.
    Dong, H., Fazzaro, A., Xiang, C., Korsmeyer, S. J., Jacquin, M. F., & McDonald, J. W. (2003). Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci, 23(25), 8682–8691.PubMedGoogle Scholar
  77. 77.
    David, S., & Aguayo, A. J. (1981). Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science, 214(4523), 931–933.CrossRefPubMedGoogle Scholar
  78. 78.
    Caroni, P., & Schwab, M. E. (1988). Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron, 1(1), 85–96.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., et al. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403(6768), 434–439.CrossRefPubMedGoogle Scholar
  80. 80.
    McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., & Braun, P. E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13(4), 805–811.CrossRefPubMedGoogle Scholar
  81. 81.
    Prinjha, R., Moore, S. E., Vinson, M., Blake, S., Morrow, R., Christie, G., et al. (2000). Inhibitor of neurite outgrowth in humans. Nature, 403(6768), 383–384.CrossRefPubMedGoogle Scholar
  82. 82.
    Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L., et al. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417(6892), 941–944.CrossRefPubMedGoogle Scholar
  83. 83.
    Hannila, S. S., Siddiq, M. M., & Filbin, M. T. (2007). Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord. International Review of Neurobiology, 77, 57–105.CrossRefPubMedGoogle Scholar
  84. 84.
    Davies, S. J., Fitch, M. T., Memberg, S. P., Hall, A. K., Raisman, G., & Silver, J. (1997). Regeneration of adult axons in white matter tracts of the central nervous system. Nature, 390(6661), 680–683.PubMedGoogle Scholar
  85. 85.
    McDonald, J. W., & Belegu, V. (2006). Demyelination and remyelination after spinal cord injury. Journal of Neurotrauma, 23(3–4), 345–359.CrossRefPubMedGoogle Scholar
  86. 86.
    Zhao, Z. M., Li, H. J., Liu, H. Y., Lu, S. H., Yang, R. C., Zhang, Q. J., et al. (2004). Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplantation, 13(2), 113–122.PubMedGoogle Scholar
  87. 87.
    Dasari, V. R., Spomar, D. G., Gondi, C. S., Sloffer, C. A., Saving, K. L., Gujrati, M., et al. (2007). Axonal remyelination by cord blood stem cells after spinal cord injury. Journal of Neurotrauma, 24(2), 391–410.CrossRefPubMedGoogle Scholar
  88. 88.
    Cho, S. R., Yang, M. S., Yim, S. H., Park, J. H., Lee, J. E., Eom, Y. W., et al. (2008). Neurally induced umbilical cord blood cells modestly repair injured spinal cords. Neuroreport, 19(13), 1259–1263.CrossRefPubMedGoogle Scholar
  89. 89.
    Saporta, S., Kim, J. J., Willing, A. E., Fu, E. S., Davis, C. D., & Sanberg, P. R. (2003). Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. Journal of Hematotherapy and Stem Cell Research, 12(3), 271–278.CrossRefPubMedGoogle Scholar
  90. 90.
    Kao, C. H., Chen, S. H., Chio, C. C., & Lin, M. T. (2008). Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock, 29(1), 49–55.PubMedGoogle Scholar
  91. 91.
    Kuh, S. U., Cho, Y. E., Yoon, D. H., Kim, K. N., & Ha, Y. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochirurgica (Wien), 147(9), 985–992. discussion 992.CrossRefGoogle Scholar
  92. 92.
    Lim, J. H., Byeon, Y. E., Ryu, H. H., Jeong, Y. H., Lee, Y. W., Kim, W. H., et al. (2007). Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. Journal of Veterinary Science, 8(3), 275–282.CrossRefPubMedGoogle Scholar
  93. 93.
    Young, W. (2009). Review of lithium effects on brain and blood. Cell Transplantation, 18(9), 951–975.CrossRefPubMedGoogle Scholar
  94. 94.
    Kang, K. S., Kim, S. W., Oh, Y. H., Yu, J. W., Kim, K. Y., Park, H. K., et al. (2005). A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy, 7(4), 368–373.CrossRefPubMedGoogle Scholar
  95. 95.
    Ha, Y., Choi, J. U., Yoon, D. H., Yeon, D. S., Lee, J. J., Kim, H. O., et al. (2001). Neural phenotype expression of cultured human cord blood cells in vitro. Neuroreport, 12(16), 3523–3527.CrossRefPubMedGoogle Scholar
  96. 96.
    Xiao, J., Nan, Z., Motooka, Y., & Low, W. C. (2005). Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells and Development, 14(6), 722–733.CrossRefPubMedGoogle Scholar
  97. 97.
    Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35(10), 2385–2389.CrossRefPubMedGoogle Scholar
  98. 98.
    Arien-Zakay, H., Lecht, S., Bercu, M. M., Tabakman, R., Kohen, R., Galski, H., et al. (2009). Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Experimental Neurology, 216(1), 83–94.CrossRefPubMedGoogle Scholar
  99. 99.
    Li, H. J., Liu, H. Y., Zhao, Z. M., Lu, S. H., Yang, R. C., Zhu, H. F., et al. (2004). Transplantation of human umbilical cord stem cells improves neurological function recovery after spinal cord injury in rats. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 26(1), 38–42.PubMedGoogle Scholar
  100. 100.
    Nishio, Y., Koda, M., Kamada, T., Someya, Y., Yoshinaga, K., Okada, S., et al. (2006). The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. Journal of Neurosurgery Spine, 5(5), 424–433.CrossRefPubMedGoogle Scholar
  101. 101.
    Dasari, V. R., Spomar, D. G., Li, L., Gujrati, M., Rao, J. S., & Dinh, D. H. (2008). Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochemistry Research, 33(1), 134–149.CrossRefGoogle Scholar
  102. 102.
    Dasari, V. R., Veeravalli, K. K., Tsung, A. J., Gondi, C. S., Gujrati, M., Dinh, D., et al. (2009). Neuronal apoptosis inhibited by cord blood stem cells after spinal cord injury. Journal of Neurotrauma, 26(11), 2057–2069.CrossRefPubMedGoogle Scholar
  103. 103.
    Hall, A. A., Guyer, A. G., Leonardo, C. C., Ajmo, C. T., Jr., Collier, L. A., Willing, A. E., et al. (2009). Human umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. Journal of Neuroscience Research, 87(2), 333–341.CrossRefPubMedGoogle Scholar
  104. 104.
    Veeravalli, K. K., Dasari, V. R., Tsung, A. J., Dinh, D. H., Gujrati, M., Fassett, D., et al. (2009). Stem cells downregulate the elevated levels of tissue plasminogen activator in rats after spinal cord injury. Neurochemistry Research, 34(7), 1183–1194.CrossRefGoogle Scholar
  105. 105.
    Krupinski, J., Kaluza, J., Kumar, P., Kumar, S., & Wang, J. M. (1994). Role of angiogenesis in patients with cerebral ischemic stroke. Stroke, 25(9), 1794–1798.PubMedGoogle Scholar
  106. 106.
    Teng, H., Zhang, Z. G., Wang, L., Zhang, R. L., Zhang, L., Morris, D., et al. (2008). Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. Journal of Cerebral Blood Flow and Metabolism, 28(4), 764–771.CrossRefPubMedGoogle Scholar
  107. 107.
    Rizvanov, A. A., Kiyasov, A. P., Gaziziov, I. M., Yilmaz, T. S., Kaligin, M. S., Andreeva, D. I., et al. (2008). Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy. Neurochemistry International, 53(6–8), 389–394.CrossRefPubMedGoogle Scholar
  108. 108.
    Vendrame, M., Gemma, C., de Mesquita, D., Collier, L., Bickford, P. C., Sanberg, C. D., et al. (2005). Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells and Development, 14(5), 595–604.CrossRefPubMedGoogle Scholar
  109. 109.
    Vendrame, M., Gemma, C., Pennypacker, K. R., Bickford, P. C., Davis Sanberg, C., Sanberg, P. R., et al. (2006). Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Experimental Neurology, 199(1), 191–200.CrossRefPubMedGoogle Scholar
  110. 110.
    Hu, C. H., Wu, G. F., Wang, X. Q., Yang, Y. H., Du, Z. M., He, X. H., et al. (2006). Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction. Chinese Medical Journal (Engl), 119(18), 1499–1506.Google Scholar
  111. 111.
    Kim, B. O., Tian, H., Prasongsukarn, K., Wu, J., Angoulvant, D., Wnendt, S., et al. (2005). Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation, 112(9 Suppl), I96–104.PubMedGoogle Scholar
  112. 112.
    Pesce, M., Orlandi, A., Iachininoto, M. G., Straino, S., Torella, A. R., Rizzuti, V., et al. (2003). Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circulation Research, 93(5), e51–62.CrossRefPubMedGoogle Scholar
  113. 113.
    Jang, J. H., Kim, S. K., Choi, J. E., Kim, Y. J., Lee, H. W., Kang, S. Y., et al. (2007). Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells. Acta Pharmacologica Sinica, 28(3), 367–374.CrossRefPubMedGoogle Scholar
  114. 114.
    Ding, D. C., Shyu, W. C., Chiang, M. F., Lin, S. Z., Chang, Y. C., Wang, H. J., et al. (2007). Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of Disease, 27(3), 339–353.CrossRefPubMedGoogle Scholar
  115. 115.
    Taguchi, A., Soma, T., Tanaka, H., Kanda, T., Nishimura, H., Yoshikawa, H., et al. (2004). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. Journal of Clinical Investigation, 114(3), 330–338.PubMedGoogle Scholar
  116. 116.
    Chen, C. T., Foo, N. H., Liu, W. S., & Chen, S. H. (2008). Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatrics and Neonatology, 49(3), 77–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dong-Hyuk Park
    • 1
  • Jeong-Hyun Lee
    • 2
  • Cesario V. Borlongan
    • 3
  • Paul R. Sanberg
    • 3
    • 4
  • Yong-Gu Chung
    • 1
  • Tai-Hyoung Cho
    • 1
  1. 1.Department of Neurosurgery, Korea University Medical Center, Anam HospitalKorea University College of MedicineSeoulKorea
  2. 2.Department of Anesthesiology, Samsung Medical CenterSungkyunkwan University College of MedicineSeoulKorea
  3. 3.Center of Excellence for Aging & Brain Repair, Department of NeurosurgeryUniversity of South Florida College of MedicineTampaUSA
  4. 4.Office of Research and InnovationUniversity of South FloridaTampaUSA

Personalised recommendations