Stem Cell Reviews and Reports

, Volume 7, Issue 1, pp 172–180 | Cite as

The Current Status of Engineering Myocardial Tissue

Article

Abstract

Myocardial infarction (MI) remains a common fatal disease all over the world. The adult cardiac myocytes regenerative capability is very limited after infarct injury. Heart transplantation would be the best therapeutic option currently but is restricted due to the lack of donor organs and the serious side effects of immune suppression. The emerging of tissue engineering has evolved to provide solutions to tissue repair and replacement. Engineering myocardial tissue is considered to be a new therapeutic approach to repair infarcted myocardium and ameliorate cardiac function after MI. Engineering myocardial tissue is the combination of biodegradable scaffolds with viable cells and has made much progress in the experimental phase. However, the largest challenge of this field is the revascularization of the engineering constructs to provide oxygen and nutrients for cells. This review will give an overview on the current evolution of engineering myocardial tissue and address a new method to improve the vascularization of myocardium tissue in vivo.

Keywords

Stem cells Tissue engineering Myocardial infarction 

Notes

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “The Current Status of Engineering Myocardial Tissue”.

References

  1. 1.
    Soonpaa, M. H., & Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation Research, 83, 15–26.PubMedGoogle Scholar
  2. 2.
    Mann, D. L. (1999). Mechanisms and models in heart failure: a combinatorial approach. Circulation, 100, 999–1008.PubMedGoogle Scholar
  3. 3.
    Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Griffith, L. G., & Naughton, G. (2002). Tissue engineering—current challenges and expanding opportunities. Science, 295(5557), 1009–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Medicine, 4(8), 929–933.CrossRefPubMedGoogle Scholar
  6. 6.
    Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San Jose-Eneriz, E., Desnos, M., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10(11), 1065–1072.CrossRefPubMedGoogle Scholar
  7. 7.
    Hagège, A. A., Marolleau, J. P., Vilquin, J. T., Alhéritière, A., Peyrard, S., Duboc, D., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation, 114(1 Suppl), I108–13.PubMedGoogle Scholar
  8. 8.
    Hattan, N., Kawaguchi, H., Ando, K., Kuwabara, E., Fujita, J., Murata, M., et al. (2005). Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovascular Research, 65(2), 334–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMedGoogle Scholar
  10. 10.
    Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences USA, 98(18), 10344–9.CrossRefGoogle Scholar
  11. 11.
    Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1210–1221.CrossRefPubMedGoogle Scholar
  12. 12.
    Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355(12), 1222–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103(5), 634–7.PubMedGoogle Scholar
  14. 14.
    Kawamoto, A., Tkebuchava, T., Yamaguchi, J., Nishimura, H., Yoon, Y. S., Milliken, C., et al. (2003). Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation, 107(3), 461–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.CrossRefPubMedGoogle Scholar
  16. 16.
    Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., Ferreira-Martins, J., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infracted myocardium improving cardiac function. Circulation Research, 103, 107–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120(10), 876–87.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Vliet, P., Roccio, M., Smits, A. M., van Oorschot, A. A., Metz, C. H., van Veen, T. A., et al. (2008). Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Netherlands Heart Journal, 16, 163–169.CrossRefPubMedGoogle Scholar
  19. 19.
    Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.CrossRefPubMedGoogle Scholar
  20. 20.
    Klug, M. G., Soonpaa, M. H., Koh, G. Y., & Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embryonic stem cells from stable intracardiac grafts. Journal of Clinical Investigation, 98(1), 216–224.CrossRefPubMedGoogle Scholar
  21. 21.
    Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.CrossRefPubMedGoogle Scholar
  22. 22.
    Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167(3), 663–671.PubMedGoogle Scholar
  23. 23.
    Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5), 498–506.CrossRefPubMedGoogle Scholar
  24. 24.
    Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Circulation, 118(5), 507–17.CrossRefPubMedGoogle Scholar
  25. 25.
    Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42, 2063–2069.CrossRefPubMedGoogle Scholar
  26. 26.
    Siminiak, T., Kalawski, R., Fiszer, D., Jerzykowska, O., Rzeźniczak, J., Rozwadowska, N., et al. (2004). Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. American Heart Journal, 148(3), 531–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Abraham, M. R., Henrikson, C. A., Tung, L., Chang, M. G., Aon, M., Xue, T., et al. (2005). Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circulation Research, 97(2), 159–167.CrossRefPubMedGoogle Scholar
  28. 28.
    Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369–377.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu, Y., Li, K., Bao, C., Liu, T., Jin, Y., Ren, H., et al. (2009). Ex vitro expansion of human placenta-derived mesenchymal stem cells in stirred bioreactor. Applied Biochemistry and Biotechnology, 159(1), 110–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Ferrari, G., Angelis, G. C., Colleta, M., Paolucci, E., Stornaiolo, A., Cossu, G., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.CrossRefPubMedGoogle Scholar
  32. 32.
    Kohyama, J., Abe, H., Shimazaki, T., Koizumi, A., Nakashima, K., Gojo, S., et al. (2001). Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 68, 235–244.CrossRefPubMedGoogle Scholar
  33. 33.
    Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1199–1209.CrossRefPubMedGoogle Scholar
  34. 34.
    Meyer, G. P., Wollert, K. C., Lotz, J., Pirr, J., Rager, U., Lippolt, P., et al. (2009). Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. European Heart Journal, 30(24), 2978–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Young, P. P., Vaughan, D. E., & Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Progress in Cardiovascular Diseases, 49(6), 421–429.CrossRefPubMedGoogle Scholar
  36. 36.
    Narmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D., & Lee, R. T. (2004). Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation, 110(8), 962–968.CrossRefPubMedGoogle Scholar
  37. 37.
    Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–76.CrossRefPubMedGoogle Scholar
  38. 38.
    Gonzalez, A., Rota, M., Nurzynska, D., Misao, Y., Tillmanns, J., Ojaimi, C., et al. (2008). Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circulation Research, 102(5), 597–606.CrossRefPubMedGoogle Scholar
  39. 39.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.CrossRefPubMedGoogle Scholar
  40. 40.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedGoogle Scholar
  41. 41.
    Chen, H., Hattori, F., Murata, M., Li, W., Yuasa, S., Onizuka, T., et al. (2008). Common marmoset embryonic stem cell can differentiate into cardiomyocytes. Biochemical and Biophysical Research Communications, 369(3), 801–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Park, I. H., Lerou, P. H., Zhao, R., Huo, H., & Daley, G. Q. (2008). Generation of human-induced pluripotent stem cells. Nature Protocols, 3, 1180–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Takahashi, M., Li, T. S., Suzuki, R., et al. (2006). Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. American Journal of Physiology - Heart and Circulatory Physiology, 291, 886–893.CrossRefGoogle Scholar
  47. 47.
    Walter, D. H., & Dimmeler, S. (2002). Endothelial progenitor cells: regulation and contribution to adult neovascularization. Herz, 27, 579–588.CrossRefPubMedGoogle Scholar
  48. 48.
    Frantz, S., Vallabhapurapu, D., Tillmanns, J., Brousos, N., Wagner, H., Henig, K., et al. (2008). Impact of different bone marrow cell preparations on left ventricular remodelling after experimental myocardial infarction. European Journal of Heart Failure, 10, 119–24.CrossRefPubMedGoogle Scholar
  49. 49.
    Nygren, J. M., Jovinge, S., Breitbach, M., Säwén, P., Röll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 10, 494–501.CrossRefPubMedGoogle Scholar
  50. 50.
    Rentrop, P., Blanke, H., Karsch, K. R., Kaiser, H., Köstering, H., & Leitz, K. (1981). Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation, 63(2), 307–17.PubMedGoogle Scholar
  51. 51.
    Menasché, P., Hagège, A. A., Vilquin, J. T., Desnos, M., Abergel, E., Pouzet, B., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9, 702–712.CrossRefPubMedGoogle Scholar
  53. 53.
    Eschenhagen, T., & Zimmermann, W. H. (2005). Engineering myocardial tissue. Circulation Research, 97(12), 1220–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Akhyari, P., Fedak, P. W., Weisel, R. D., Lee, T. Y., Verma, S., Mickle, D. A., et al. (2002). Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(12 Suppl 1), I137–42.PubMedGoogle Scholar
  55. 55.
    Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100, II63–II9.PubMedGoogle Scholar
  56. 56.
    Eschenhagen, T., Didié, M., Heubach, J., Ravens, U., & Zimmermann, W. H. (2002). Cardiac tissue engineering. Transplant Immunology, 9(2–4), 315–21.CrossRefPubMedGoogle Scholar
  57. 57.
    Shao, Z. Q., Takaji, K., Katayama, Y., Kunitomo, R., Sakaguchi, H., Lai, Z. F., et al. (2006). Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circulation Journal, 70(4), 471–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M., & Robbins, R. C. (2005). Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 112(9 Suppl), I173–7.PubMedGoogle Scholar
  59. 59.
    Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., et al. (2002). In vitro engineering of heart muscle: artificial myocardial tissue. Journal of Thoracic and Cardiovascular Surgery, 124(1), 63–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102, III56–III61.PubMedGoogle Scholar
  61. 61.
    Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., et al. (1997). Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J, 11, 683–94.PubMedGoogle Scholar
  63. 63.
    Eschenhagen, T., Didie, M., Munzel, F., Schubert, P., Schneiderbanger, K., & Zimmermann, W. H. (2002). 3D engineered heart tissue for replacement therapy. Basic Research in Cardiology, 97(Suppl 1), I146–I152.PubMedGoogle Scholar
  64. 64.
    Ke, Q., Yang, Y., Rana, J. S., Chen, Y., Morgan, J. P., & Xiao, Y. F. (2005). Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Acta Physiologica Sinica, 57(6), 673–681.PubMedGoogle Scholar
  65. 65.
    Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., et al. (1999). Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. American Journal of Physiology, 277(2 Pt 2), H433–44.PubMedGoogle Scholar
  66. 66.
    Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7(12), 1003–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Piao, H., Kwon, J. S., Piao, S., Sohn, J. H., Lee, Y. S., Bae, J. W., et al. (2007). Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials, 28(4), 641–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., et al. (2002). Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation Research, 90(3), e40.CrossRefPubMedGoogle Scholar
  69. 69.
    Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12(4), 459–65.CrossRefPubMedGoogle Scholar
  70. 70.
    McDevitt, T. C., Woodhouse, K. A., Hauschka, S. D., Murry, C. E., & Stayton, P. S. (2003). Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. Journal of Biomedical Materials Research Part A, 66(3), 586–95.PubMedGoogle Scholar
  71. 71.
    Wang, Y., Liu, X. C., Zhao, J., Kong, X. R., Shi, R. F., Zhao, X. B., et al. (2009). Degradable PLGA scaffolds with basic fibroblast growth factor: experimental studies in myocardial revascularization. Texas Heart Institute Journal, 36(2), 89–97.PubMedGoogle Scholar
  72. 72.
    Boerboom, R. A., Rubbens, M. P., Driessen, N. J., Bouten, C. V., & Baaijens, F. P. (2008). Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Annals of Biomedical Engineering, 36(2), 244–53.CrossRefPubMedGoogle Scholar
  73. 73.
    Mainil-Varlet, P., Rahn, B., & Gogolewski, S. (1997). Long-term in vivo degradation and bone reaction to various polylactides. 1. One year results. Biomaterials, 18(3), 257–66.CrossRefPubMedGoogle Scholar
  74. 74.
    Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.CrossRefPubMedGoogle Scholar
  75. 75.
    Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences USA, 103(21), 8155–8160.CrossRefGoogle Scholar
  76. 76.
    Chaudhry, P. A., Mishima, T., Sharov, V. G., Hawkins, J., Alferness, C., Paone, G., et al. (2000). Passive epicardial containment prevents ventricular remodeling in heart failure. Annals of Thoracic Surgery, 70(4), 1275–80.CrossRefPubMedGoogle Scholar
  77. 77.
    Saavedra, W. F., Tunin, R. S., Paolocci, N., Mishima, T., Suzuki, G., Emala, C. W., et al. (2002). Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. Journal of the American College of Cardiology, 39(12), 2069–76.CrossRefPubMedGoogle Scholar
  78. 78.
    Kofidis, T., de Bruin, J. L., Hoyt, G., Ho, Y., Tanaka, M., Yamane, T., et al. (2005). Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. Journal of Heart and Lung Transplantation, 24(6), 737–744.CrossRefPubMedGoogle Scholar
  79. 79.
    Zimmermann, W. H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12(4), 452–458.CrossRefPubMedGoogle Scholar
  80. 80.
    Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.CrossRefPubMedGoogle Scholar
  81. 81.
    Radisic, M., Deen, W., Langer, R., & Vunjak-Novakovic, G. (2005). Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology - Heart and Circulatory, 288, H1278–89.CrossRefGoogle Scholar
  82. 82.
    Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285, 1182–1186.CrossRefPubMedGoogle Scholar
  83. 83.
    Rakusan, K., Flanagan, M. F., Geva, T., Southern, J., & Van Praagh, R. (1992). Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation, 86, 38–46.PubMedGoogle Scholar
  84. 84.
    Kanamori, T., Watanabe, G., Yasuda, T., Nagamine, H., Kamiya, H., & Koshida, Y. (2006). Hybrid surgical angiogenesis: Omentopexy can enhance myocardial angiogenesis induced by cell therapy. Annals of Thoracic Surgery, 81, 160–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Suzuki, R., Hattori, F., Itabashi, Y., Yoshioka, M., Yuasa, S., Manabe-Kawaguchi, H., et al. (2009). Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochemical and Biophysical Research Communications, 387(2), 353–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Taheri, S. A., Ashraf, H., Merhige, M., Miletich, R. S., Satchidanand, S., Malik, C., et al. (2005). Myoangiogenesis after cell patch cardiomyoplasty and omentopexy in a patient with ischemic cardiomyopathy. Texas Heart Institute Journal, 32, 598–601.PubMedGoogle Scholar
  87. 87.
    Shao, Z. Q., Kawasuji, M., Takaji, K., Katayama, Y., & Matsukawa, M. (2008). Therapeutic angiogenesis with autologous hepatic tissue implantation and omental wrapping. Circulation Journal, 72(11), 1894–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Kuwabara, Y., Sato, A., Mitani, M., Shinoda, N., Hattori, K., Suzuki, T., et al. (2001). Use of omentum for medisastinal tracheostomy after total laryngoesophagectomy. Annals of Thoracic Surgery, 71, 409–413.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cardiothoracic Surgery, Xiangya Second HospitalCentral South UniversityChangshaChina

Personalised recommendations