Stem Cell Reviews and Reports

, Volume 6, Issue 1, pp 108–120 | Cite as

Differentiation of Human Embryonic Stem Cells to Cardiomyocytes for In Vitro and In Vivo Applications



The ability of human embryonic stem cells to differentiate into spontaneously contracting cardiomyocyte-like cells has attracted substantial interest from the scientific community over the last decade. From having been difficult to control, human cardiomyogenesis in vitro is now becoming a process which, to a certain extent, can be effectively manipulated and directed. Although much research remains, new and improved protocols for guiding pluripotent stem cells to the cardiomyocyte lineage are accumulating in the scientific literature. However, the stem cell derived cardiomyocytes described to date, generally resemble immature embryonic/fetal cardiomyocytes, and they are in some functional and structural aspects different from adult cardiomyocytes. Thus, a future challenge will be to design strategies that eventually may allow the cells to reach a higher degree of maturation in vitro. Nevertheless, the cells which can be prepared using current protocols still have wide spread utility, and they have begun to find their way into the drug discovery platforms used in the pharmaceutical industry. In addition, stem cell derived cardiomyocytes and cardiac progenitors are anticipated to have a tremendous impact on how heart disease will be treated in the future. Here, we will discuss recent strategies for the generation of cardiomyocytes from human embryonic stem cells and recapitulate their features, as well as highlight some in vitro applications for the cells. Finally, opportunities in the area of cardiac regenerative medicine will be illustrated.


Human embryonic stem cells Cardiomyocytes Differentiation Drug discovery Regenerative medicine 


  1. 1.
    Meyer, T., Sartipy, P., Blind, F., Leisgen, C., & Guenther, E. (2007). New cell models and assays in cardiac safety profiling. Expert Opinion on Drug Metabolism and Toxicology, 3, 507–517.CrossRefPubMedGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedGoogle Scholar
  3. 3.
    Bongso, A., & Tan, S. (2005). Human blastocyst culture and derivation of embryonic stem cell lines. Stem Cell Review, 1, 87–98.CrossRefGoogle Scholar
  4. 4.
    Daley, G. Q. (2007). L, Auerbach JM, et al. Ethics. The ISSCR guidelines for human embryonic stem cell research. Science, 315, 603–604.CrossRefPubMedGoogle Scholar
  5. 5.
    Ameen, C., Strehl, R., Bjorquist, P., Lindahl, A., Hyllner, J., & Sartipy, P. (2008). Human embryonic stem cells: current technologies and emerging industrial applications. Critical Reviews in Oncology/hematology, 65, 54–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 208–216.CrossRefPubMedGoogle Scholar
  7. 7.
    Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: reflections at the 10-year point. Circulation, 112, 3174–3183.CrossRefPubMedGoogle Scholar
  8. 8.
    Anversa, P., Leri, A., Rota, M., et al. (2007). Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells, 25, 589–601.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang, J., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.CrossRefPubMedGoogle Scholar
  10. 10.
    Zwi, L., Caspi, O., Arbel, G., et al. (2009). Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120, 1513–1523.CrossRefPubMedGoogle Scholar
  11. 11.
    Bruneau, B. G. (2008). The developmental genetics of congenital heart disease. Nature, 451, 943–948.CrossRefPubMedGoogle Scholar
  12. 12.
    Buckingham, M., Meilhac, S., & Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nature Reviews Genetics, 6, 826–835.CrossRefPubMedGoogle Scholar
  13. 13.
    Mummery, C., van der Heyden, M. A., de Boer, T. P., et al. (2007). Cardiomyocytes from human and mouse embryonic stem cells. Methods in Molecular Medicine, 140, 249–272.CrossRefPubMedGoogle Scholar
  14. 14.
    He, J. Q., January, C. T., Thomson, J. A., & Kamp, T. J. (2007). Human embryonic stem cell-derived cardiomyocytes: drug discovery and safety pharmacology. Expert Opinion on Drug Discovery, 2, 739–753.CrossRefGoogle Scholar
  15. 15.
    Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132, 661–680.CrossRefPubMedGoogle Scholar
  16. 16.
    Torella, D., Indolfi, C., Goldspink, D. F., & Ellison, G. M. (2008). Cardiac stem cell-based myocardial regeneration: towards a translational approach. Cardiovascular and Hematological Agents in Medicinal Chemistry, 6, 53–59.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu, Y., Shi, Y., & Ding, S. (2008). A chemical approach to stem-cell biology and regenerative medicine. Nature, 453, 338–344.CrossRefPubMedGoogle Scholar
  18. 18.
    Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6, 88–95.PubMedGoogle Scholar
  19. 19.
    Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of clinical investigation, 108, 407–414.PubMedGoogle Scholar
  20. 20.
    Mummery, C., Ward-van Oostwaard, D., Doevendans, P., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.CrossRefPubMedGoogle Scholar
  21. 21.
    Graichen, R., Xu, X., Braam, S. R., et al. (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76, 357–370.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu, X. Q., Graichen, R., Soo, S. Y., et al. (2008). Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 76, 958–970.PubMedGoogle Scholar
  23. 23.
    Zaffran, S., & Frasch, M. (2002). Early signals in cardiac development. Circulation Research, 91, 457–469.CrossRefPubMedGoogle Scholar
  24. 24.
    Olson, E. N. (2004). A decade of discoveries in cardiac biology. Nature Medicine, 10, 467–474.CrossRefPubMedGoogle Scholar
  25. 25.
    Filipczyk, A. A., Passier, R., Rochat, A., & Mummery, C. L. (2007). Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cellular and Molecular Life Sciences, 64, 704–718.CrossRefPubMedGoogle Scholar
  26. 26.
    Yoon, B. S., Yoo, S. J., Lee, J. E., You, S., Lee, H. T., & Yoon, H. S. (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74, 149–159.CrossRefPubMedGoogle Scholar
  27. 27.
    Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., & Elefanty, A. G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 106, 1601–1603.CrossRefPubMedGoogle Scholar
  28. 28.
    Burridge, P. W., Anderson, D., Priddle, H., et al. (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells, 25, 929–938.CrossRefPubMedGoogle Scholar
  29. 29.
    Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M., & Lassar, A. B. (2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes and Development, 15, 316–327.CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes and Development, 15, 304–315.CrossRefPubMedGoogle Scholar
  31. 31.
    Klaus, A., & Birchmeier, W. (2009). Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp-and Wnt/beta-catenin signaling. Pediatric Cardiology, 30, 609–616.CrossRefPubMedGoogle Scholar
  32. 32.
    Tran, T. H., Wang, X., Browne, C., et al. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells, 27, 1869–1878.CrossRefPubMedGoogle Scholar
  33. 33.
    Passier, R., Oostwaard, D. W., Snapper, J., et al. (2005). Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23, 772–780.CrossRefPubMedGoogle Scholar
  34. 34.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.CrossRefPubMedGoogle Scholar
  35. 35.
    Takahashi, T., Lord, B., Schulze, P. C., et al. (2003). Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 107, 1912–1916.CrossRefPubMedGoogle Scholar
  36. 36.
    Wu, X., Ding, S., Ding, Q., Gray, N. S., & Schultz, P. G. (2004). Small molecules that induce cardiomyogenesis in embryonic stem cells. Journal of the American Chemical Society, 126, 1590–1591.CrossRefPubMedGoogle Scholar
  37. 37.
    Willems, E., Bushway, P. J., & Mercola, M. (2009). Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatric Cardiology, 30, 635–642.CrossRefPubMedGoogle Scholar
  38. 38.
    Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.CrossRefPubMedGoogle Scholar
  39. 39.
    Bu, L., Jiang, X., Martin-Puig, S., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460, 113–117.CrossRefPubMedGoogle Scholar
  40. 40.
    Kattman, S. J., Huber, T. L., & Keller, G. M. (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Developmental Cell, 11, 723–732.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang, L., Soonpaa, M. H., Adler, E. D., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453, 524–528.CrossRefPubMedGoogle Scholar
  42. 42.
    Moretti, A., Caron, L., Nakano, A., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.CrossRefPubMedGoogle Scholar
  43. 43.
    Christoforou, N., Miller, R. A., Hill, C. M., Jie, C. C., McCallion, A. S., & Gearhart, J. D. (2008). Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. Journal of clinical investigation, 118, 894–903.PubMedGoogle Scholar
  44. 44.
    Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91, 501–508.CrossRefPubMedGoogle Scholar
  45. 45.
    Xu, C., Police, S., Hassanipour, M., & Gold, J. D. (2006). Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells and Development, 15, 631–639.CrossRefPubMedGoogle Scholar
  46. 46.
    Rust, W., Balakrishnan, T., & Zweigerdt, R. (2009). Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regenerative Medicine, 4, 225–237.CrossRefPubMedGoogle Scholar
  47. 47.
    Kolossov, E., Lu, Z., Drobinskaya, I., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB journal, 19, 577–579.PubMedGoogle Scholar
  48. 48.
    Anderson, D., Self, T., Mellor, I. R., Goh, G., Hill, S. J., & Denning, C. (2007). Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Molecular Theraphy, 15, 2027–2036.CrossRefGoogle Scholar
  49. 49.
    Huber, I., Itzhaki, I., Caspi, O., et al. (2007). Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. Faseb Journal, 21, 2551–2563.CrossRefPubMedGoogle Scholar
  50. 50.
    Fu JD, Jiang P, Rushing S, Liu J, Chiamvimonvat N, Li RA. Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev 2009.Google Scholar
  51. 51.
    Xu, X. Q., Zweigerdt, R., Soo, S. Y., et al. (2008). Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy, 10, 376–389.CrossRefPubMedGoogle Scholar
  52. 52.
    Kita-Matsuo, H., Barcova, M., Prigozhina, N., et al. (2009). Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS ONE, 4, e5046.CrossRefPubMedGoogle Scholar
  53. 53.
    Snir, M., Kehat, I., Gepstein, A., et al. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 285, H2355–H2363.PubMedGoogle Scholar
  54. 54.
    He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93, 32–39.CrossRefPubMedGoogle Scholar
  55. 55.
    Satin, J., Kehat, I., Caspi, O., et al. (2004). Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. Journal of physiology, 559, 479–496.CrossRefPubMedGoogle Scholar
  56. 56.
    Dolnikov, K., Shilkrut, M., Zeevi-Levin, N., et al. (2005). Functional properties of human embryonic stem cell-derived cardiomyocytes. Annals of the New York Academy of Sciences, 1047, 66–75.CrossRefPubMedGoogle Scholar
  57. 57.
    Sartiani, L., Bettiol, E., Stillitano, F., Mugelli, A., Cerbai, E., & Jaconi, M. E. (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25, 1136–1144.CrossRefPubMedGoogle Scholar
  58. 58.
    Reppel, M., Boettinger, C., & Hescheler, J. (2004). Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes. Cell Physiology and Biochemistry, 14, 187–196.CrossRefGoogle Scholar
  59. 59.
    Norstrom, A., Akesson, K., Hardarson, T., Hamberger, L., Bjorquist, P., & Sartipy, P. (2006). Molecular and pharmacological properties of human embryonic stem cell-derived cardiomyocytes. Experimental Biology and Medicine (Maywood), 231, 1753–1762.Google Scholar
  60. 60.
    Binah, O., Dolnikov, K., Sadan, O., et al. (2007). Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. Journal of electrocardiology, 40, S192–S196.CrossRefPubMedGoogle Scholar
  61. 61.
    Brito-Martins, M., Harding, S. E., & Ali, N. N. (2008). beta(1)-and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. British Journal of Pharmacology, 153, 751–759.CrossRefPubMedGoogle Scholar
  62. 62.
    Beqqali, A., Kloots, J., Ward-van Oostwaard, D., Mummery, C., & Passier, R. (2006). Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells, 24, 1956–1967.CrossRefPubMedGoogle Scholar
  63. 63.
    Synnergren, J., Adak, S., Englund, M. C., et al. (2008). Cardiomyogenic gene expression profiling of differentiating human embryonic stem cells. Journal of biotechnology, 134, 162–170.CrossRefPubMedGoogle Scholar
  64. 64.
    Synnergren J, Akesson K, Dahlenborg K, et al. Molecular signature of cardiomyocyte clusters derived from human embryonic stem cells. Stem Cells 2008.Google Scholar
  65. 65.
    Cao, F., Wagner, R. A., Wilson, K. D., et al. (2008). Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE, 3, e3474.CrossRefPubMedGoogle Scholar
  66. 66.
    Xu, X. Q., Soo, S. Y., Sun, W., & Zweigerdt, R. (2009). Global Expression Profile of Highly Enriched Cardiomyocytes Derived from Human Embryonic Stem Cells. Stem Cells, 27, 2163–2174.CrossRefPubMedGoogle Scholar
  67. 67.
    Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3, 711–715.CrossRefPubMedGoogle Scholar
  68. 68.
    Jonsson, M. K. B., van Veen, T. A. B., Goumans, M. J., Vos, M. A., Duker, G., & Sartipy, P. (2009). Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opinion Drug Discovery, 4, 357–372.CrossRefGoogle Scholar
  69. 69.
    Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.CrossRefPubMedGoogle Scholar
  70. 70.
    Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., et al. (1998). HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America, 95, 2979–2984.CrossRefPubMedGoogle Scholar
  71. 71.
    Reppel, M., Pillekamp, F., Brockmeier, K., et al. (2005). The electrocardiogram of human embryonic stem cell-derived cardiomyocytes. Journal of electrocardiology, 38, 166–170.CrossRefPubMedGoogle Scholar
  72. 72.
    Caspi O, Itzhaki I, Arbel G, et al. In Vitro Electrophysiological Drug Testing using Human Embryonic Stem Cell Derived Cardiomyocytes. Stem Cells Dev 2008.Google Scholar
  73. 73.
    Tanaka, T., Tohyama, S., Murata, M., et al. (2009). In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 385, 497–502.CrossRefPubMedGoogle Scholar
  74. 74.
    Altena, R., Perik, P. J., van Veldhuisen, D. J., de Vries, E. G., & Gietema, J. A. (2009). Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet oncology, 10, 391–399.CrossRefPubMedGoogle Scholar
  75. 75.
    Dolci, A., Dominici, R., Cardinale, D., Sandri, M. T., & Panteghini, M. (2008). Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. American Journal of Clinical Pathology, 130, 688–695.CrossRefPubMedGoogle Scholar
  76. 76.
    Kloner, R. A., & Jennings, R. B. (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation, 104, 2981–2989.CrossRefPubMedGoogle Scholar
  77. 77.
    Braam SR, Denning C, van den Brink S, et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods 2008.Google Scholar
  78. 78.
    Sartipy, P., Olsson, B., Hyllner, J., & Synnergren, J. (2009). Regulation of 'stemness' and stem cell differentiation by microRNAs. IDrugs, 12, 492–496.PubMedGoogle Scholar
  79. 79.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221.CrossRefPubMedGoogle Scholar
  80. 80.
    Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.CrossRefPubMedGoogle Scholar
  81. 81.
    Bergmann, O., Bhardwaj, R. D., Bernard, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMedGoogle Scholar
  82. 82.
    Kubo, H., Jaleel, N., Kumarapeli, A., et al. (2008). Increased cardiac myocyte progenitors in failing human hearts. Circulation, 118, 649–657.CrossRefPubMedGoogle Scholar
  83. 83.
    Kehat, I., Khimovich, L., Caspi, O., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.CrossRefPubMedGoogle Scholar
  84. 84.
    Laflamme, M. A., Gold, J., Xu, C., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167, 663–671.PubMedGoogle Scholar
  85. 85.
    Leor, J., Gerecht, S., Cohen, S., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.CrossRefPubMedGoogle Scholar
  86. 86.
    Caspi, O., Huber, I., Kehat, I., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.CrossRefPubMedGoogle Scholar
  87. 87.
    van Laake, L. W., Passier, R., Monshouwer-Kloots, J., et al. (2007). Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 1, 9–24.PubMedGoogle Scholar
  88. 88.
    van Laake LW, Passier R, den Ouden K, et al. Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res 2009.Google Scholar
  89. 89.
    Stevens, K. R., Pabon, L., Muskheli, V., & Murry, C. E. (2009). Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Engineering: Part A, 15, 1211–1222.CrossRefGoogle Scholar
  90. 90.
    Stevens, K. R., Kreutziger, K. L., Dupras, S. K., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences of the United States of America, 106, 16568–16573.CrossRefPubMedGoogle Scholar
  91. 91.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.CrossRefPubMedGoogle Scholar
  92. 92.
    Messina, E., De Angelis, L., Frati, G., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.CrossRefPubMedGoogle Scholar
  93. 93.
    Bearzi, C., Rota, M., Hosoda, T., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14068–14073.CrossRefPubMedGoogle Scholar
  94. 94.
    Laugwitz, K. L., Moretti, A., Lam, J., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.CrossRefPubMedGoogle Scholar
  95. 95.
    van Vliet, P., Roccio, M., Smits, A. M., et al. (2008). Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Netherlands Heart Journal, 16, 163–169.PubMedGoogle Scholar
  96. 96.
    Martin, C. M., Meeson, A. P., Robertson, S. M., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.CrossRefPubMedGoogle Scholar
  97. 97.
    Reinecke, H., Zhang, M., Bartosek, T., & Murry, C. E. (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100, 193–202.PubMedGoogle Scholar
  98. 98.
    Chen, S., Zhang, Q., Wu, X., Schultz, P. G., & Ding, S. (2004). Dedifferentiation of lineage-committed cells by a small molecule. Journal of the American Chemical Society, 126, 410–411.CrossRefPubMedGoogle Scholar
  99. 99.
    Thomas, R. J., Anderson, D., Chandra, A., et al. (2009). Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnology and Bioengineering, 102, 1636–1644.CrossRefPubMedGoogle Scholar
  100. 100.
    Goswami, J., & Rao, M. (2007). Embryonic stem cell therapy. IDrugs, 10, 713–719.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hilmar Vidarsson
    • 1
  • Johan Hyllner
    • 1
  • Peter Sartipy
    • 1
  1. 1.Cellartis ABGöteborgSweden

Personalised recommendations