Stem Cell Reviews and Reports

, Volume 6, Issue 1, pp 27–30 | Cite as

Stem Cell Transplants at Childbirth

  • Paul R. Sanberg
  • Dong-Hyuk Park
  • Cesar V. BorlonganEmail author


Autologous transplantation of stem cells is a natural phenomenon at birth in mammals via the umbilical cord. Here, we discuss that a delay in the cord clamping may increase stem cell supply to the baby, thereby allowing an innate stem cell therapy that can render acute benefits in the case of neonatal disease, as well as long-term benefits against age-related diseases.


Stem cell transplantation Umbilical cord blood Fetal stem cells 



The authors thank Ms. Enkyung Cate Bae for excellent technical assistance during the preparation of this manuscript.

Disclosure of Conflicts of Interests

Drs. Sanberg and Borlongan serve as consultants to a number of stem cell-based companies, and are members of American Society of Neural Therapy and Repair.


  1. 1.
    Sanberg, P. R. (2007). Neural stem cells for Parkinson’s disease: to protect and repair. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 11869–11870.CrossRefPubMedGoogle Scholar
  2. 2.
    Borlongan, C. V. (2009). Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke, 40(3 Suppl), S146–S148.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee, J. P., Jeyakumar, M., Gonzalez, R., Takahashi, H., Lee, P. J., Baek, R. C., et al. (2007). Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature Medicine, 13(4), 439–447.CrossRefPubMedGoogle Scholar
  4. 4.
    Yasuhara, T., Hara, K., Maki, M., Xu, L., Yu, G., Ali, M. M., et al. (2009). Mannitol facilitates neurotrophic factor upregulation and behavioral recovery in neonatal hypoxic-ischemic rats with human umbilical cord blood grafts. Journal of Cellular and Molecular Medicine [Epub ahead of print].Google Scholar
  5. 5.
    Diaz-Rossello, J. L. (2006). International perspectives: cord clamping for stem cell donation: medical facts and ethics. NeoReviews, 7, e557–e563.CrossRefGoogle Scholar
  6. 6.
    Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required forneuroprotection in stroke. Stroke, 35(10), 2385–2389.CrossRefPubMedGoogle Scholar
  7. 7.
    Baenziger, O., Stolkin, F., Keel, M., von Siebenthal, K., Fauchere, J. C., Das Kundu, S., et al. (2007). The influence of the timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized, controlled trial. Pediatrics, 119(3), 455–459.CrossRefPubMedGoogle Scholar
  8. 8.
    Mercer, J. S., Vohr, B. R., McGrath, M. M., Padbury, J. F., Wallach, M., & Oh, W. (2006). Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics, 117(4), 1235–1242.CrossRefPubMedGoogle Scholar
  9. 9.
    Hutton, E. K., & Hassan, E. S. (2007). Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. Journal of the American Medical Association, 297(11), 1241–1252.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, N., Hudson, J. E., Walczak, P., Misiuta, I., Garbuzova-Davis, S., Jiang, L., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23(10), 1560–1570.CrossRefPubMedGoogle Scholar
  11. 11.
    Secco, M., Zucconi, E., Vieira, N. M., Fogaça, L. L., Cerqueira, A., Carvalho, M. D., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 26(1), 146–150.CrossRefPubMedGoogle Scholar
  12. 12.
    Franceschini, V., Bettini, S., Pifferi, S., Rosellini, A., Menini, A., Saccardi, R., et al. (2009). Human cord blood CD133+ stem cells transplanted to Nod-Scid mice provide conditions for regeneration of olfactory neuroepithelium after permanent damage induced by dichlobenil. Stem Cells, 27(4), 825–835.CrossRefPubMedGoogle Scholar
  13. 13.
    McDonald, S. J., & Middleton, P. (2008). Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database of Systematic Reviews, 16(2), CD004074.Google Scholar
  14. 14.
    Brocklebank, A. M., & Sparrow, R. L. (2001). Enumeration of CD34+ cells in cord blood: a variation on a single-platform flow cytometric method based on the ISHAGE gating strategy. Cytometry, 46(4), 254–261.CrossRefPubMedGoogle Scholar
  15. 15.
    Yao, A. C., Moinian, M., & Lind, J. (1969). Distribution of blood between infant and placenta after birth. Lancet, 2(7626), 871–873.CrossRefPubMedGoogle Scholar
  16. 16.
    Capasso, L., Raimondi, F., Capasso, A., Crivaro, V., Capasso, R., & Paludetto, R. (2003). Early cord clamping protects at-risk neonates from polycythemia. Biology of the Neonate, 83(3), 197–200.CrossRefPubMedGoogle Scholar
  17. 17.
    Ceriani Cernadas, J. M., Carroli, G., Pellegrini, L., Otaño, L., Ferreira, M., Ricci, C., et al. (2006). The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics, 117(4), e779–e786.CrossRefPubMedGoogle Scholar
  18. 18.
    Chaparro, C. M., Neufeld, L. M., Tena Alavez, G., Eguia-Líz Cedillo, R., & Dewey, K. G. (2006). Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet, 367(9527), 1997–2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Strauss, R. G., Mock, D. M., Johnson, K. J., Cress, G. A., Burmeister, L. F., Zimmerman, M. B., et al. (2008). A randomized clinical trial comparing immediate versus delayed clamping of the umbilical cord in preterm infants: short-term clinical and laboratory endpoints. Transfusion, 48(4), 658–665.CrossRefPubMedGoogle Scholar
  20. 20.
    van Rheenen, P., & Brabin, B. J. (2004). Late umbilical cord-clamping as an intervention for reducing iron deficiency anaemia in term infants in developing and industrialized countries: a systematic review. Annals of Tropical Paediatrics, 24(1), 3–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Rabe, H., Reynolds, G., & Diaz-Rossello, J. (2004). Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database of Systemic Reviews, 8(4), CD003248.Google Scholar
  22. 22.
    Rabe, H., Reynolds, G., & Diaz-Rossello J. (2008). A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology, 93(2),138–144.Google Scholar
  23. 23.
    Das, H., Abdulhameed. N., Joseph. M., Sakthivel R., Mao H. Q., & Pompili, V. J. (2009). Ex vivo nanofiber expansion and genetic modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis. Cell Transplantation, 18(3), 305–318.Google Scholar
  24. 24.
    Park, D.-H., Borlongan, C. V., Willing A. E., Eve D. J., & Sanberg P. R. (2009). Human Umbilical Cord Blood Cell Grafts for Brain ischemia. Cell Transplantation (in press).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Paul R. Sanberg
    • 1
    • 2
  • Dong-Hyuk Park
    • 1
    • 3
  • Cesar V. Borlongan
    • 1
    Email author
  1. 1.Department of Neurosurgery and Brain RepairUniversity of South Florida College of MedicineTampaUSA
  2. 2.Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain RepairCollege of Medicine, Office of Research and Innovation, University of South FloridaTampaUSA
  3. 3.Department of Neurosurgery, Korea University Medical CenterKorea University College of MedicineSeoulSouth Korea

Personalised recommendations