Stem Cell Reviews and Reports

, Volume 6, Issue 1, pp 15–26 | Cite as

Promising New Sources for Pluripotent Stem Cells

  • Christian Leeb
  • Marcin Jurga
  • Colin McGuckin
  • Richard Moriggl
  • Lukas KennerEmail author


Recent findings have placed stem cell research at the forefront of biomedical sciences. Basic research on embryonic stem cells (ESCs) has contributed to our knowledge about the developmental potential and plasticity of stem cells. Furthermore, it has raised hope to use these cells as potential source for regenerative medicine and tissue replacement after injury or disease. Unfortunately, ESCs can also form tumors and they are ethically controversial because they originate from human embryos. This review summarizes findings and therapeutic applications of ESCs and their alternatives: adult stem cells and iPS cells.


Pluripotency Stem cell Umbilical cord Therapy Induced pluripotent stem cell 



This work was supported by the Novus Sanguis research consortium (449-MC1-2006B). We are grateful to Nico Forraz for his support and scientific guidance as well as Aaron Gardner for providing the cord figure.


  1. 1.
    Amit, M., Carpenter, M. K., Inokuma, M. S., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227(2), 271–278.PubMedGoogle Scholar
  2. 2.
    Sartipy, P., Bjorquist, P., Strehl, R., & Hyllner, J. (2007). The application of human embryonic stem cell technologies to drug discovery. Drug Discovery Today, 12(17–18), 688–699.PubMedGoogle Scholar
  3. 3.
    Keirstead, H. S., Nistor, G., Bernal, G., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25(19), 4694–4705.PubMedGoogle Scholar
  4. 4.
    Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6(2), e1000029.PubMedGoogle Scholar
  5. 5.
    Gurdon, J. B., & Melton, D. A. (2008). Nuclear reprogramming in cells. Science, 322(5909), 1811–1815.PubMedGoogle Scholar
  6. 6.
    Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309(5739), 1369–1373.PubMedGoogle Scholar
  7. 7.
    Matsumura, H., Tada, M., Otsuji, T., et al. (2007). Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods, 4(1), 23–25.PubMedGoogle Scholar
  8. 8.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedGoogle Scholar
  9. 9.
    Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.PubMedGoogle Scholar
  10. 10.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.PubMedGoogle Scholar
  11. 11.
    Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.PubMedGoogle Scholar
  12. 12.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedGoogle Scholar
  13. 13.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedGoogle Scholar
  14. 14.
    Park, I. H., Zhao, R., West, J. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.PubMedGoogle Scholar
  15. 15.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedGoogle Scholar
  16. 16.
    Kim, J. B., Zaehres, H., Wu, G., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–650.PubMedGoogle Scholar
  17. 17.
    Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.PubMedGoogle Scholar
  18. 18.
    Feng, B., Jiang, J., Kraus, P., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11(2), 197–203.PubMedGoogle Scholar
  19. 19.
    Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605.PubMedGoogle Scholar
  20. 20.
    Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1(3), 245–247.PubMedGoogle Scholar
  21. 21.
    Brambrink, T., Foreman, R., Welstead, G. G., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–159.PubMedGoogle Scholar
  22. 22.
    Hockemeyer, D., Soldner, F., Cook, E. G., Gao, Q., Mitalipova, M., & Jaenisch, R. (2008). A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 3(3), 346–353.PubMedGoogle Scholar
  23. 23.
    Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3(3), 340–345.PubMedGoogle Scholar
  24. 24.
    Stadtfeld, M., Maherali, N., Breault, D. T., & Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2(3), 230–240.PubMedGoogle Scholar
  25. 25.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.PubMedGoogle Scholar
  26. 26.
    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.PubMedGoogle Scholar
  27. 27.
    Sommer, C. A., Stadtfeld, M., Murphy, G. J., Hochedlinger, K., Kotton, D. N., & Mostoslavsky, G. (2008). iPS cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.Google Scholar
  28. 28.
    Carey, B. W., Markoulaki, S., Hanna, J., et al. (2008). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 157–162.PubMedGoogle Scholar
  29. 29.
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.PubMedGoogle Scholar
  30. 30.
    Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.PubMedGoogle Scholar
  31. 31.
    Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.PubMedGoogle Scholar
  32. 32.
    Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 1–4.Google Scholar
  33. 33.
    Lowry, W. E., Richter, L., Yachechko, R., et al. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2883–2888.PubMedGoogle Scholar
  34. 34.
    Miura, K., Okada, Y., Aoi, T., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27(8), 743–745.PubMedGoogle Scholar
  35. 35.
    Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.PubMedGoogle Scholar
  36. 36.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.PubMedGoogle Scholar
  37. 37.
    Ebert, A. D., Yu, J., Rose, F. F., Jr., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280.PubMedGoogle Scholar
  38. 38.
    Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.PubMedGoogle Scholar
  39. 39.
    Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.PubMedGoogle Scholar
  40. 40.
    Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.PubMedGoogle Scholar
  41. 41.
    Ye, L., Chang, J. C., Lin, C., Sun, X., Yu, J., & Kan, Y. W. (2009). Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9826–9830.PubMedGoogle Scholar
  42. 42.
    Wernig, M., Zhao, J. P., Pruszak, J., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5856–5861.PubMedGoogle Scholar
  43. 43.
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455(7213), 627–632.PubMedGoogle Scholar
  44. 44.
    Erdo, F., Buhrle, C., Blunk, J., et al. (2003). Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 23(7), 780–785.PubMedGoogle Scholar
  45. 45.
    Ford, C. E., Hamerton, J. L., Barnes, D. W., & Loutit, J. F. (1956). Cytological identification of radiation-chimaeras. Nature, 177(4506), 452–454.PubMedGoogle Scholar
  46. 46.
    McKay, R. (1997). Stem cells in the central nervous system. Science, 276(5309), 66–71.PubMedGoogle Scholar
  47. 47.
    Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433–1438.PubMedGoogle Scholar
  48. 48.
    Watt, F. M. (2001). Stem cell fate and patterning in mammalian epidermis. Current Opinion in Genetics and Development, 11(4), 410–417.PubMedGoogle Scholar
  49. 49.
    Daniels, J. T., Dart, J. K., Tuft, S. J., & Khaw, P. T. (2001). Corneal stem cells in review. Wound Repair and Regeneration, 9(6), 483–494.PubMedGoogle Scholar
  50. 50.
    Slack, J. M. (1995). Developmental biology of the pancreas. Development, 121(6), 1569–1580.PubMedGoogle Scholar
  51. 51.
    Spradling, A., Drummond-Barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414(6859), 98–104.PubMedGoogle Scholar
  52. 52.
    Alonso, L., & Fuchs, E. (2003). Stem cells of the skin epithelium. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11830–11835.PubMedGoogle Scholar
  53. 53.
    Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell, 105(7), 829–841.PubMedGoogle Scholar
  54. 54.
    McGuckin, C. P., & Forraz, N. (2008). Potential for access to embryonic-like cells from human umbilical cord blood. Cell Proliferation, 41(Suppl 1), 31–40.PubMedGoogle Scholar
  55. 55.
    Rocha, V., Wagner, J. E., Jr., Sobocinski, K. A., et al. (2000). Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and international bone marrow transplant registry working committee on alternative donor and stem cell sources. The New England Journal of Medicine, 342(25), 1846–1854.PubMedGoogle Scholar
  56. 56.
    Rubinstein, P., Adamson, J. W., & Stevens, C. (1999). The placental/umbilical cord blood program of the New York blood center. A progress report. Annals of the New York Academy of Sciences, 872, 328–334. discussion 34–5.PubMedGoogle Scholar
  57. 57.
    Cohen, Y., & Nagler, A. (2004). Umbilical cord blood transplantation—how, when and for whom? Blood Reviews, 18(3), 167–179.PubMedGoogle Scholar
  58. 58.
    Liu, E., Law, H. K., & Lau, Y. L. (2004). Tolerance associated with cord blood transplantation may depend on the state of host dendritic cells. British Journal Haematology, 126(4), 517–526.Google Scholar
  59. 59.
    Gilmore, G. L., DePasquale, D. K., Lister, J., & Shadduck, R. K. (2000). Ex vivo expansion of human umbilical cord blood and peripheral blood CD34(+) hematopoietic stem cells. Experimental Hematology, 28(11), 1297–1305.PubMedGoogle Scholar
  60. 60.
    Ende, N., Lu, S., Alcid, M. G., Chen, R., & Mack, R. (2001). Pooled umbilical cord blood as a possible universal donor for marrow reconstitution and use in nuclear accidents. Life Sciences, 69(13), 1531–1539.PubMedGoogle Scholar
  61. 61.
    Querol, S., Capmany, G., Azqueta, C., et al. (2000). Direct immunomagnetic method for CD34+ cell selection from cryopreserved cord blood grafts for ex vivo expansion protocols. Transfusion, 40(6), 625–631.PubMedGoogle Scholar
  62. 62.
    Forraz, N., Pettengell, R., Deglesne, P. A., & McGuckin, C. P. (2002). AC133+ umbilical cord blood progenitors demonstrate rapid self-renewal and low apoptosis. British Journal Haematology, 119(2), 516–524.Google Scholar
  63. 63.
    McGuckin, C. P., Pearce, D., Forraz, N., Tooze, J. A., Watt, S. M., & Pettengell, R. (2003). Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. European Journal of Haematology, 71(5), 341–350.PubMedGoogle Scholar
  64. 64.
    Baal, N., Reisinger, K., Jahr, H., et al. (2004). Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thrombosis and Haemostasis, 92(4), 767–775.PubMedGoogle Scholar
  65. 65.
    Kucia, M., Halasa, M., Wysoczynski, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia, 21(2), 297–303.PubMedGoogle Scholar
  66. 66.
    Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.PubMedGoogle Scholar
  67. 67.
    Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D. M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43(11), 1009–1017.PubMedGoogle Scholar
  68. 68.
    McGuckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295(2), 350–359.PubMedGoogle Scholar
  69. 69.
    McGuckin, C. P., Forraz, N., Baradez, M. O., et al. (2005). Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation, 38(4), 245–255.PubMedGoogle Scholar
  70. 70.
    Denner, L., Bodenburg, Y., Zhao, J. G., et al. (2007). Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Proliferation, 40(3), 367–380.PubMedGoogle Scholar
  71. 71.
    Jurga, M., Lipkowski, A. W., Lukomska, B., Buzanska, L., Kurzepa, K., Sobanski, T., et al. (2009). Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Engineering Part C Methods, 15(3), 365–372.
  72. 72.
    Ali, H., Jurga, M., Kurgonaite, K., Forraz, N., & McGuckin, C. (2009). Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiologiae Experimentalis, 69(1), 12–23.PubMedGoogle Scholar
  73. 73.
    Zhao, Y., Wang, H., & Mazzone, T. (2006). Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Experimental Cell Research, 312(13), 2454–2464.PubMedGoogle Scholar
  74. 74.
    Sun, B., Roh, K. H., Lee, S. R., Lee, Y. S., & Kang, K. S. (2007). Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure. Biochemical and Biophysical Research Communications, 354(4), 919–923.PubMedGoogle Scholar
  75. 75.
    Yoshida, S., Ishikawa, F., Kawano, N., et al. (2005). Human cord blood—derived cells generate insulin-producing cells in vivo. Stem Cells, 23(9), 1409–1416.PubMedGoogle Scholar
  76. 76.
    van de Ven, C., Collins, D., Bradley, M. B., Morris, E., & Cairo, M. S. (2007). The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Experimental Hematology, 35(12), 1753–1765.PubMedGoogle Scholar
  77. 77.
    Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.PubMedGoogle Scholar
  78. 78.
    Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.PubMedGoogle Scholar
  79. 79.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 26(1), 146–150.PubMedGoogle Scholar
  80. 80.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders, 18(1), 17–18.PubMedGoogle Scholar
  81. 81.
    Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403.PubMedGoogle Scholar
  82. 82.
    Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 105–110.PubMedGoogle Scholar
  83. 83.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23(2), 220–229.PubMedGoogle Scholar
  84. 84.
    Ma, L., Feng, X. Y., Cui, B. L., et al. (2005). Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chinese Medical Journal (Engl), 118(23), 1987–1993.Google Scholar
  85. 85.
    Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21(1), 50–60.PubMedGoogle Scholar
  86. 86.
    Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.PubMedGoogle Scholar
  87. 87.
    Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15(6), 708–718.PubMedCrossRefGoogle Scholar
  88. 88.
    Jo, C. H., Kim, O. S., Park, E. Y., et al. (2008). Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell and Tissue Research, 334(3), 423–433.PubMedGoogle Scholar
  89. 89.
    Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25(2), 319–331.PubMedGoogle Scholar
  90. 90.
    Kermani, A. J., Fathi, F., & Mowla, S. J. (2008). Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Research, 11(2), 379–386.PubMedGoogle Scholar
  91. 91.
    Sohrabji, F., & Lewis, D. K. (2006). Estrogen-BDNF interactions: implications for neurodegenerative diseases. Frontiers in Neuroendocrinology, 27(4), 404–414.PubMedGoogle Scholar
  92. 92.
    Yaghoobi, M. M., & Mowla, S. J. (2006). Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neuroscience Letters, 397(1–2), 149–154.PubMedGoogle Scholar
  93. 93.
    Ende, M., & Ende, N. (1972). Hematopoietic transplantation by means of fetal (cord) blood. A new method. Virginia Medical Monthly (1918), 99(3), 276–80.Google Scholar
  94. 94.
    Gluckman, E., & Rocha, V. (2009). Cord blood transplantation: state of the art. Haematologica, 94(4), 451–454.PubMedGoogle Scholar
  95. 95.
    Wagner, J. E., Barker, J. N., DeFor, T. E., et al. (2002). Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood, 100(5), 1611–1618.PubMedGoogle Scholar
  96. 96.
    Locatelli, F., Rocha, V., Reed, W., et al. (2003). Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood, 101(6), 2137–2143.PubMedGoogle Scholar
  97. 97.
    Gluckman, E., Rocha, V., Boyer-Chammard, A., et al. (1997). Outcome of cord-blood transplantation from related and unrelated donors. Eurocord transplant group and the European blood and marrow transplantation group. The New England Journal of Medicine, 337(6), 373–381.PubMedGoogle Scholar
  98. 98.
    Rubinstein, P., Carrier, C., Scaradavou, A., et al. (1998). Outcomes among 562 recipients of placental-blood transplants from unrelated donors. The New England Journal of Medicine, 339(22), 1565–1577.PubMedGoogle Scholar
  99. 99.
    Kurtzberg, J., Laughlin, M., Graham, M. L., et al. (1996). Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. The New England Journal of Medicine, 335(3), 157–166.PubMedGoogle Scholar
  100. 100.
    Wagner, J. E., Rosenthal, J., Sweetman, R., et al. (1996). Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood, 88(3), 795–802.PubMedGoogle Scholar
  101. 101.
    Laughlin, M. J., Barker, J., Bambach, B., et al. (2001). Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. The New England Journal of Medicine, 344(24), 1815–1822.PubMedGoogle Scholar
  102. 102.
    Barker, J. N., Davies, S. M., DeFor, T., Ramsay, N. K., Weisdorf, D. J., & Wagner, J. E. (2001). Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood, 97(10), 2957–2961.PubMedGoogle Scholar
  103. 103.
    Laughlin, M. J., Eapen, M., Rubinstein, P., et al. (2004). Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. The New England Journal of Medicine, 351(22), 2265–2275.PubMedGoogle Scholar
  104. 104.
    Rocha, V., Labopin, M., Sanz, G., et al. (2004). Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. The New England Journal of Medicine, 351(22), 2276–2285.PubMedGoogle Scholar
  105. 105.
    Hwang, W. Y., Samuel, M., Tan, D., Koh, L. P., Lim, W., & Linn, Y. C. (2007). A meta-analysis of unrelated donor umbilical cord blood transplantation versus unrelated donor bone marrow transplantation in adult and pediatric patients. Biology of Blood and Marrow Transplantation, 13(4), 444–453.PubMedGoogle Scholar
  106. 106.
    Gluckman, E., & Rocha, V. (2006). Donor selection for unrelated cord blood transplants. Current Opinion in Immunology, 18(5), 565–570.PubMedGoogle Scholar
  107. 107.
    Harris, D. T. (2009). Non-haematological uses of cord blood stem cells. British Journal Haematology, 147(2), 177–184.Google Scholar
  108. 108.
    Advani, A. S., & Laughlin, M. J. (2009). Umbilical cord blood transplantation for acute myeloid leukemia. Current Opinion in Hematology, 16(2), 124–128.PubMedGoogle Scholar
  109. 109.
    Kurtzberg, J. (2009). Update on umbilical cord blood transplantation. Current Opinion in Pediatrics, 21(1), 22–29.PubMedGoogle Scholar
  110. 110.
    Harris, D. T. (2008). Cord blood stem cells: a review of potential neurological applications. Stem Cell Reviews, 4(4), 269–274.PubMedGoogle Scholar
  111. 111.
    Tse, W., Bunting, K. D., & Laughlin, M. J. (2008). New insights into cord blood stem cell transplantation. Current Opinion in Hematology, 15(4), 279–284.PubMedGoogle Scholar
  112. 112.
    Giorgetti, A., Montserrat, N., Aasen, T., et al. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5(4), 353–357.PubMedGoogle Scholar
  113. 113.
    Haase, A., Olmer, R., Schwanke, K., et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4), 434–441.PubMedGoogle Scholar
  114. 114.
    Ohnuma, K., Isoyama, K., Ikuta, K., et al. (2001). Cord blood transplantation from HLA-mismatched unrelated donors as a treatment for children with haematological malignancies. British Journal Haematology, 112(4), 981–987.Google Scholar
  115. 115.
    Paquette, R. L., Dergham, S. T., Karpf, E., et al. (2000). Ex vivo expanded unselected peripheral blood: progenitor cells reduce posttransplantation neutropenia, thrombocytopenia, and anemia in patients with breast cancer. Blood, 96(7), 2385–2390.PubMedGoogle Scholar
  116. 116.
    Nieboer, P., de Vries, E. G., Mulder, N. H., et al. (2001). Long-term haematological recovery following high-dose chemotherapy with autologous bone marrow transplantation or peripheral stem cell transplantation in patients with solid tumours. Bone Marrow Transplantation, 27(9), 959–966.PubMedGoogle Scholar
  117. 117.
    Voltarelli, J. C., Couri, C. E., Stracieri, A. B., et al. (2007). Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Jama, 297(14), 1568–1576.PubMedGoogle Scholar
  118. 118.
    Burt, R. K., Traynor, A., Statkute, L., et al. (2006). Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. Jama, 295(5), 527–535.PubMedGoogle Scholar
  119. 119.
    Burt, R. K., Oyama, Y., Verda, L., et al. (2004). Induction of remission of severe and refractory rheumatoid arthritis by allogeneic mixed chimerism. Arthritis and Rheumatism, 50(8), 2466–2470.PubMedGoogle Scholar
  120. 120.
    Saccardi, R., Mancardi, G. L., Solari, A., et al. (2005). Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood, 105(6), 2601–2607.PubMedGoogle Scholar
  121. 121.
    Grunebaum, E., Mazzolari, E., Porta, F., et al. (2006). Bone marrow transplantation for severe combined immune deficiency. Jama, 295(5), 508–518.PubMedGoogle Scholar
  122. 122.
    Ziegner, U. H., Ochs, H. D., Schanen, C., et al. (2001). Unrelated umbilical cord stem cell transplantation for X-linked immunodeficiencies. The Journal of Pediatrics, 138(4), 570–573.PubMedGoogle Scholar
  123. 123.
    Klein, A., Brachet, C., Azzi, N., & Ferster, A. (2005). Hematopoietic stem cell transplantation for severe sickle cell disease. Revue médicale de Bruxelles, 26 Spec no, Sp23-5.Google Scholar
  124. 124.
    Ayas, M., Al-Jefri, A., Mustafa, M. M., Al-Mahr, M., Shalaby, L., & Solh, H. (2001). Congenital sideroblastic anaemia successfully treated using allogeneic stem cell transplantation. British Journal Haematology, 113(4), 938–939.Google Scholar
  125. 125.
    Gurman, G., Celebi, H., Ustun, C., et al. (2001). Allogeneic peripheral blood stem cell transplantation for severe aplastic anemia. Therapeutic Apheresis, 5(1), 54–57.PubMedGoogle Scholar
  126. 126.
    Inatomi, T., Nakamura, T., Koizumi, N., Sotozono, C., Yokoi, N., & Kinoshita, S. (2006). Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. American Journal of Ophthalmology, 141(2), 267–275.PubMedGoogle Scholar
  127. 127.
    Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351(12), 1187–1196.PubMedGoogle Scholar
  128. 128.
    Badiavas, E. V., & Falanga, V. (2003). Treatment of chronic wounds with bone marrow-derived cells. Archives of Dermatology, 139(4), 510–516.PubMedGoogle Scholar
  129. 129.
    Blocklet, D., Toungouz, M., Berkenboom, G., et al. (2006). Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells, 24(2), 333–336.PubMedGoogle Scholar
  130. 130.
    Janssens, S., Dubois, C., Bogaert, J., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.PubMedGoogle Scholar
  131. 131.
    Patel, A. N., Geffner, L., Vina, R. F., et al. (2005). Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. Journal of Thoracic and Cardiovascular Surgery, 130(6), 1631–1638.PubMedGoogle Scholar
  132. 132.
    Bartunek, J., Vanderheyden, M., Vandekerckhove, B., et al. (2005). Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation, 112(9 Suppl), I178–I183.PubMedGoogle Scholar
  133. 133.
    Dohmann, H. F., Perin, E. C., Takiya, C. M., et al. (2005). Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation, 112(4), 521–526.PubMedGoogle Scholar
  134. 134.
    Strauer, B. E., Brehm, M., Zeus, T., et al. (2005). Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. Journal of the American College of Cardiology, 46(9), 1651–1658.PubMedGoogle Scholar
  135. 135.
    Shyu, W. C., Lin, S. Z., Lee, C. C., Liu, D. D., & Li, H. (2006). Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. Cmaj, 174(7), 927–933.PubMedGoogle Scholar
  136. 136.
    Stilley, C. S., Ryan, C. M., Kondziolka, D., Bender, A., DeCesare, S., & Wechsler, L. (2004). Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke. Neurology, 63(7), 1320–1322.PubMedGoogle Scholar
  137. 137.
    Meltzer, C. C., Kondziolka, D., Villemagne, V. L., et al. (2001). Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery, 49(3), 586–91. discussion 591–2.PubMedGoogle Scholar
  138. 138.
    Lima, C., Pratas-Vital, J., Escada, P., Hasse-Ferreira, A., Capucho, C., & Peduzzi, J. D. (2006). Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med, 29(3), 191–203. discussion 204–6.PubMedGoogle Scholar
  139. 139.
    Bauchet, L., Lonjon, N., Perrin, F. E., Gilbert, C., Privat, A., & Fattal, C. (2009). Strategies for spinal cord repair after injury: a review of the literature and information. Annals of Physical and Rehabilitation Medicine, 52(4), 330–351.
  140. 140.
    Terai, S., Ishikawa, T., Omori, K., et al. (2006). Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 24(10), 2292–2298.PubMedGoogle Scholar
  141. 141.
    Gordon, M. Y., Levicar, N., Pai, M., et al. (2006). Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells, 24(7), 1822–1830.PubMedGoogle Scholar
  142. 142.
    Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655), 2023–2030.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christian Leeb
    • 1
  • Marcin Jurga
    • 2
  • Colin McGuckin
    • 2
  • Richard Moriggl
    • 1
  • Lukas Kenner
    • 1
    • 3
    Email author
  1. 1.Ludwig Boltzmann Institute for Cancer ResearchViennaAustria
  2. 2.Cell Therapy Research Institute CTI-LYONSaint PriestFrance
  3. 3.Institute of Clinical PathologyViennaAustria

Personalised recommendations